Results 1 
3 of
3
Prior Probabilities
 IEEE Transactions on Systems Science and Cybernetics
, 1968
"... e case of location and scale parameters, rate constants, and in Bernoulli trials with unknown probability of success. In realistic problems, both the transformation group analysis and the principle of maximum entropy are needed to determine the prior. The distributions thus found are uniquely determ ..."
Abstract

Cited by 181 (3 self)
 Add to MetaCart
(Show Context)
e case of location and scale parameters, rate constants, and in Bernoulli trials with unknown probability of success. In realistic problems, both the transformation group analysis and the principle of maximum entropy are needed to determine the prior. The distributions thus found are uniquely determined by the prior information, independently of the choice of parameters. In a certain class of problems, therefore, the prior distributions may now be claimed to be fully as "objective" as the sampling distributions. I. Background of the problem Since the time of Laplace, applications of probability theory have been hampered by difficulties in the treatment of prior information. In realistic problems of decision or inference, we often have prior information which is highly relevant to the question being asked; to fail to take it into account is to commit the most obvious inconsistency of reasoning and may lead to absurd or dangerously misleading results. As an extreme examp
Testing the Significance of Attribute Interactions
 In Proc. of 21st International Conference on Machine Learning (ICML
, 2004
"... Attribute interactions are the irreducible dependencies between attributes. Interactions underlie feature relevance and selection, the structure of joint probability and classification models: if and only if the attributes interact, they should be connected. While the issue of 2way interactions, es ..."
Abstract

Cited by 20 (3 self)
 Add to MetaCart
(Show Context)
Attribute interactions are the irreducible dependencies between attributes. Interactions underlie feature relevance and selection, the structure of joint probability and classification models: if and only if the attributes interact, they should be connected. While the issue of 2way interactions, especially of those between an attribute and the label, has already been addressed, we introduce an operational definition of a generalized nway interaction by highlighting two models: the reductionistic parttowhole approximation, where the model of the whole is reconstructed from models of the parts, and the holistic reference model, where the whole is modelled directly.