Results 1 
5 of
5
Deterministic and Stochastic Models for Coalescence (Aggregation, Coagulation): a Review of the MeanField Theory for Probabilists
 Bernoulli
, 1997
"... Consider N particles, which merge into clusters according to the rule: a cluster of size x and a cluster of size y merge at (stochastic) rate K(x; y)=N , where K is a specified rate kernel. This MarcusLushnikov model of stochastic coalescence, and the underlying deterministic approximation given by ..."
Abstract

Cited by 142 (13 self)
 Add to MetaCart
Consider N particles, which merge into clusters according to the rule: a cluster of size x and a cluster of size y merge at (stochastic) rate K(x; y)=N , where K is a specified rate kernel. This MarcusLushnikov model of stochastic coalescence, and the underlying deterministic approximation given by the Smoluchowski coagulation equations, have an extensive scientific literature. Some mathematical literature (Kingman's coalescent in population genetics; component sizes in random graphs) implicitly studies the special cases K(x; y) = 1 and K(x; y) = xy. We attempt a wideranging survey. General kernels are only now starting to be studied rigorously, so many interesting open problems appear. Keywords. branching process, coalescence, continuum tree, densitydependent Markov process, gelation, random graph, random tree, Smoluchowski coagulation equation Research supported by N.S.F. Grant DMS9622859 1 Introduction Models, implicitly or explicitly stochastic, of coalescence (= coagulati...
Coalescent Random Forests
 J. COMBINATORIAL THEORY A
, 1998
"... Various enumerations of labeled trees and forests, including Cayley's formula n n\Gamma2 for the number of trees labeled by [n], and Cayley's multinomial expansion over trees, are derived from the following coalescent construction of a sequence of random forests (R n ; R n\Gamma1 ; : : : ; R 1 ..."
Abstract

Cited by 38 (18 self)
 Add to MetaCart
Various enumerations of labeled trees and forests, including Cayley's formula n n\Gamma2 for the number of trees labeled by [n], and Cayley's multinomial expansion over trees, are derived from the following coalescent construction of a sequence of random forests (R n ; R n\Gamma1 ; : : : ; R 1 ) such that R k has uniform distribution over the set of all forests of k rooted trees labeled by [n]. Let R n be the trivial forest with n root vertices and no edges. For n k 2, given that R n ; : : : ; R k have been defined so that R k is a rooted forest of k trees, define R k\Gamma1 by addition to R k of a single edge picked uniformly at random from the set of n(k \Gamma 1) edges which when added to R k yield a rooted forest of k \Gamma 1 trees. This coalescent construction is related to a model for a physical process of clustering or coagulation, the additive coalescent in which a system of masses is subject to binary coalescent collisions, with each pair of masses of magnitude...
Enumerations Of Trees And Forests Related To Branching Processes And Random Walks
 Microsurveys in Discrete Probability, number 41 in DIMACS Ser. Discrete Math. Theoret. Comp. Sci
, 1997
"... In a GaltonWatson branching process with offspring distribution (p 0 ; p 1 ; : : :) started with k individuals, the distribution of the total progeny is identical to the distribution of the first passage time to \Gammak for a random walk started at 0 which takes steps of size j with probability p ..."
Abstract

Cited by 38 (15 self)
 Add to MetaCart
In a GaltonWatson branching process with offspring distribution (p 0 ; p 1 ; : : :) started with k individuals, the distribution of the total progeny is identical to the distribution of the first passage time to \Gammak for a random walk started at 0 which takes steps of size j with probability p j+1 for j \Gamma1. The formula for this distribution is a probabilistic expression of the Lagrange inversion formula for the coefficients in the power series expansion of f(z) k in terms of those of g(z) for f(z) defined implicitly by f(z) = zg(f(z)). The Lagrange inversion formula is the analytic counterpart of various enumerations of trees and forests which generalize Cayley's formula kn n\Gammak\Gamma1 for the number of rooted forests labeled by a set of size n whose set of roots is a particular subset of size k. These known results are derived by elementary combinatorial methods without appeal to the Lagrange formula, which is then obtained as a byproduct. This approach unifies an...
Moment Convergence In Conditional Limit Theorems
, 2000
"... . Consider a sum P N 1 Y i of random variables conditioned on a given value of the sum P N 1 X i of some other variables, where X i and Y i are dependent but the pairs (X i ; Y i ) form an i.i.d. sequence. We prove, for a triangular array (X ni ; Y ni ) of such pairs satisfying certain condi ..."
Abstract

Cited by 5 (4 self)
 Add to MetaCart
. Consider a sum P N 1 Y i of random variables conditioned on a given value of the sum P N 1 X i of some other variables, where X i and Y i are dependent but the pairs (X i ; Y i ) form an i.i.d. sequence. We prove, for a triangular array (X ni ; Y ni ) of such pairs satisfying certain conditions, both convergence of the distribution of the conditioned sum (after suitable normalization) to a normal distribution, and convergence of its moments. The results are motivated by an application to hashing with linear probing; we give also some other applications to occupancy problems, random forests, and branching processes. 1. Introduction Many random variables arising in different areas of probability theory, combinatorics and statistics turn out to have the same distribution as a sum of independent random variables conditioned on a specific value of another such sum. More precisely, we are concerned with variables with the distribution of P N 1 Y i conditioned on P N 1 X...
Stochastic Coalescence
, 1998
"... . Consider N particles, which merge into clusters according to the rule: a cluster of size x and a cluster of size y merge at (stochastic) rate K(x; y)=N , where K is a specified rate kernel. This MarcusLushnikov model of coalescence, and the underlying deterministic approximation provided by the S ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
. Consider N particles, which merge into clusters according to the rule: a cluster of size x and a cluster of size y merge at (stochastic) rate K(x; y)=N , where K is a specified rate kernel. This MarcusLushnikov model of coalescence, and the underlying deterministic approximation provided by the Smoluchowski coagulation equations, have an extensive scientific literature. A recent reformulation is the general stochastic coalescent, whose state space is the infinitedimensional simplex (the state x = (x i ; i 1) represents unit mass split into clusters of masses x i ), and which evolves by clusters of masses x i and x j coalescing at rate K(x i ; x j ). Existing mathematical literature (Kingman's coalescent, component sizes in random graphs, fragmentation of random trees) implicitly studies certain special cases. Recent work has uncovered deeper constructions of special cases of the stochastic coalescent in terms of Browniantype processes. Rigorous study of general kernels has only j...