Results 1 
3 of
3
Random Mapping Statistics
 IN ADVANCES IN CRYPTOLOGY
, 1990
"... Random mappings from a finite set into itself are either a heuristic or an exact model for a variety of applications in random number generation, computational number theory, cryptography, and the analysis of algorithms at large. This paper introduces a general framework in which the analysis of ..."
Abstract

Cited by 79 (6 self)
 Add to MetaCart
Random mappings from a finite set into itself are either a heuristic or an exact model for a variety of applications in random number generation, computational number theory, cryptography, and the analysis of algorithms at large. This paper introduces a general framework in which the analysis of about twenty characteristic parameters of random mappings is carried out: These parameters are studied systematically through the use of generating functions and singularity analysis. In particular, an open problem of Knuth is solved, namely that of finding the expected diameter of a random mapping. The same approach is applicable to a larger class of discrete combinatorial models and possibilities of automated analysis using symbolic manipulation systems ("computer algebra") are also briefly discussed.
AbelCayleyHurwitz multinomial expansions associated with random mappings, forests, and subsets
, 1998
"... Extensions of binomial and multinomial formulae due to Abel, Cayley and Hurwitz are related to the probability distributions of various random subsets, trees, forests, and mappings. For instance, an extension of Hurwitz's binomial formula is associated with the probability distribution of the random ..."
Abstract

Cited by 13 (12 self)
 Add to MetaCart
Extensions of binomial and multinomial formulae due to Abel, Cayley and Hurwitz are related to the probability distributions of various random subsets, trees, forests, and mappings. For instance, an extension of Hurwitz's binomial formula is associated with the probability distribution of the random set of vertices of a fringe subtree in a random forest whose distribution is defined by terms of a multinomial expansion over rooted labeled forests which generalizes Cayley's expansion over unrooted labeled trees. Contents 1 Introduction 2 Research supported in part by N.S.F. Grant DMS9703961 2 Probabilistic Interpretations 5 3 Cayley's multinomial expansion 11 4 Random Mappings 14 4.1 Mappings from S to S : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15 4.2 The random set of cyclic points : : : : : : : : : : : : : : : : : : : : : : : 18 5 Random Forests 19 5.1 Distribution of the roots of a pforest : : : : : : : : : : : : : : : : : : : : 19 5.2 Conditioning on the set...
Random mappings, forests, and subsets associated with AbelCayleyHurwitz multinomial expansions
, 2001
"... Various random combinatorial objects, such as mappings, trees, forests, and subsets of a finite set, are constructed with probability distributions related to the binomial and multinomial expansions due to Abel, Cayley and Hurwitz. Relations between these combinatorial objects, such as Joyal's b ..."
Abstract

Cited by 13 (9 self)
 Add to MetaCart
Various random combinatorial objects, such as mappings, trees, forests, and subsets of a finite set, are constructed with probability distributions related to the binomial and multinomial expansions due to Abel, Cayley and Hurwitz. Relations between these combinatorial objects, such as Joyal's bijection between mappings and marked rooted trees, have interesting probabilistic interpretations, and applications to the asymptotic structure of large random trees and mappings. An extension of Hurwitz's binomial formula is associated with the probability distribution of the random set of vertices of a fringe subtree in a random forest whose distribution is defined by terms of a multinomial expansion over rooted labeled forests. Research supported in part by N.S.F. Grants DMS 9703961 and DMS0071448 1 Contents 1