Results 1 
6 of
6
Hybrid Logics: Characterization, Interpolation and Complexity
 Journal of Symbolic Logic
, 1999
"... Hybrid languages are expansions of propositional modal languages which can refer to (or even quantify over) worlds. The use of strong hybrid languages dates back to at least [Pri67], but recent work (for example [BS98, BT98a, BT99]) has focussed on a more constrained system called H(#; @). We sho ..."
Abstract

Cited by 105 (37 self)
 Add to MetaCart
Hybrid languages are expansions of propositional modal languages which can refer to (or even quantify over) worlds. The use of strong hybrid languages dates back to at least [Pri67], but recent work (for example [BS98, BT98a, BT99]) has focussed on a more constrained system called H(#; @). We show in detail that H(#; @) is modally natural. We begin by studying its expressivity, and provide model theoretic characterizations (via a restricted notion of EhrenfeuchtFrasse game, and an enriched notion of bisimulation) and a syntactic characterization (in terms of bounded formulas). The key result to emerge is that H(#; @) corresponds to the fragment of rstorder logic which is invariant for generated submodels. We then show that H(#; @) enjoys (strong) interpolation, provide counterexamples for its nite variable fragments, and show that weak interpolation holds for the sublanguage H(@). Finally, we provide complexity results for H(@) and other fragments and variants, and sh...
A roadmap on complexity for hybrid logics
 Computer Science Logic, number 1683 in LNCS
, 1999
"... Abstract. Hybrid languages are extended modal languages which can refer to (or even quantify over) states. Such languages are better behaved proof theoretically than ordinary modal languages for they internalize the apparatus of labeled deduction. Moreover, they arise naturally in a variety of appli ..."
Abstract

Cited by 93 (17 self)
 Add to MetaCart
Abstract. Hybrid languages are extended modal languages which can refer to (or even quantify over) states. Such languages are better behaved proof theoretically than ordinary modal languages for they internalize the apparatus of labeled deduction. Moreover, they arise naturally in a variety of applications, including description logic and temporal reasoning. Thus it would be useful to have a map of their complexitytheoretic properties, and this paper provides one. Our work falls into two parts. We first examine the basic hybrid language and its multimodal and tense logical cousins. We show that the basic hybrid language (and indeed, multimodal hybrid languages) are no more complex than ordinary unimodal logic: all have pspacecomplete Ksatisfiability problems. We then show that adding even one nominal to tense logic raises complexity from pspace to exptime. In the second part we turn to stronger hybrid languages in which it is possible to bind nominals. We prove a general expressivity result showing that even the weak form of binding offered by the ↓ operator easily leads to undecidability.
Internalizing Labelled Deduction
 Journal of Logic and Computation
, 2000
"... This paper shows how to internalize the Kripke satisfaction denition using the basic hybrid language, and explores the proof theoretic consequences of doing so. As we shall see, the basic hybrid language enables us to transfer classic Gabbaystyle labelled deduction methods from the metalanguage to ..."
Abstract

Cited by 77 (21 self)
 Add to MetaCart
This paper shows how to internalize the Kripke satisfaction denition using the basic hybrid language, and explores the proof theoretic consequences of doing so. As we shall see, the basic hybrid language enables us to transfer classic Gabbaystyle labelled deduction methods from the metalanguage to the object language, and to handle labelling discipline logically. This internalized approach to labelled deduction links neatly with the Gabbaystyle rules now widely used in modal Hilbertsystems, enables completeness results for a wide range of rstorder denable frame classes to be obtained automatically, and extends to many richer languages. The paper discusses related work by Jerry Seligman and Miroslava Tzakova and concludes with some reections on the status of labelling in modal logic. 1 Introduction Modern modal logic revolves around the Kripke satisfaction relation: M;w ': This says that the model M satises (or forces, or supports) the modal formula ' at the state w in M....
Hybrid languages and temporal logic
 Logic J. IGPL
, 1999
"... Hybridization is a method invented by Arthur Prior for extending the expressive power of modal languages. Although developed in interesting ways by Robert Bull, and by the So a school (notably, George Gargov, Valentin Goranko, Solomon Passy and Tinko Tinchev), the method remains little known. In our ..."
Abstract

Cited by 40 (16 self)
 Add to MetaCart
Hybridization is a method invented by Arthur Prior for extending the expressive power of modal languages. Although developed in interesting ways by Robert Bull, and by the So a school (notably, George Gargov, Valentin Goranko, Solomon Passy and Tinko Tinchev), the method remains little known. In our view this has deprived temporal logic of a valuable tool. The aim of the paper is to explain why hybridization is useful in temporal logic. We make two major points, the rst technical, the second conceptual. First, we showthathybridization gives rise to wellbehaved logics that exhibit an interesting synergy between modal and classical ideas. This synergy, obvious for hybrid languages with full rstorder expressive strength, is demonstrated for a weaker local language capable of de ning the Until operator � we provide a minimal axiomatization, and show that in a wide range of temporally interesting cases extended completeness results can be obtained automatically. Second, we argue that the idea of sorted atomic symbols which underpins the hybrid enterprise can be developed further. To illustrate this, we discuss the advantages and disadvantages of a simple hybrid language which can quantify over paths. 1
Hybridizing Concept Languages
 Annals of Mathematics and Artificial Intelligence
"... This paper shows how to increase the expressivity of concept languages using a strategy called hybridization. Building on the wellknown correspondences between modal and description logics, two hybrid languages are dened. These languages are called `hybrid' because, as well as the familiar ..."
Abstract

Cited by 17 (8 self)
 Add to MetaCart
This paper shows how to increase the expressivity of concept languages using a strategy called hybridization. Building on the wellknown correspondences between modal and description logics, two hybrid languages are dened. These languages are called `hybrid' because, as well as the familiar propositional variables and modal operators, they also contain variables across individuals and a binder that binds these variables. As is shown, combining aspects of modal and rstorder logic in this manner allows the expressivity of concept languages to be boosted in a natural way, making it possible to dene number restrictions, collections of individuals, irreexivity of roles, and TBox and ABoxstatements. Subsequent addition of the universal modality allows the notion of subsumption to internalized, and enables the representation of queries to arbitrary rstorder knowledge bases. The paper notes themes shared by the hybrid and concept language literatures, and draws attention t...
Bringing them all Together
, 2001
"... this paper, Jerry Seligman takes us on an interesting journey. The satisfaction denition of most modal operators is specied in terms of rstorder conditions. Hence we can always obtain a complete calculus for the basic logic characterizing any collection of such operators by appealing to a calculus ..."
Abstract

Cited by 15 (0 self)
 Add to MetaCart
this paper, Jerry Seligman takes us on an interesting journey. The satisfaction denition of most modal operators is specied in terms of rstorder conditions. Hence we can always obtain a complete calculus for the basic logic characterizing any collection of such operators by appealing to a calculus which is complete for the full rstorder language. Seligman shows here that by making use of the expressiveness provided by the hybrid apparatus, we can, step by step, transform a rstorder sequent calculus into an internalized sequent calculus specically tailored for a particular hybrid fragment