Results 1 
5 of
5
Adapting to unknown smoothness via wavelet shrinkage
 JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
, 1995
"... We attempt to recover a function of unknown smoothness from noisy, sampled data. We introduce a procedure, SureShrink, which suppresses noise by thresholding the empirical wavelet coefficients. The thresholding is adaptive: a threshold level is assigned to each dyadic resolution level by the princip ..."
Abstract

Cited by 672 (19 self)
 Add to MetaCart
We attempt to recover a function of unknown smoothness from noisy, sampled data. We introduce a procedure, SureShrink, which suppresses noise by thresholding the empirical wavelet coefficients. The thresholding is adaptive: a threshold level is assigned to each dyadic resolution level by the principle of minimizing the Stein Unbiased Estimate of Risk (Sure) for threshold estimates. The computational effort of the overall procedure is order N log(N) as a function of the sample size N. SureShrink is smoothnessadaptive: if the unknown function contains jumps, the reconstruction (essentially) does also; if the unknown function has a smooth piece, the reconstruction is (essentially) as smooth as the mother wavelet will allow. The procedure is in a sense optimally smoothnessadaptive: it is nearminimax simultaneously over a whole interval of the Besov scale; the size of this interval depends on the choice of mother wavelet. We know from a previous paper by the authors that traditional smoothing methods  kernels, splines, and orthogonal series estimates  even with optimal choices of the smoothing parameter, would be unable to perform
Minimax Estimation via Wavelet Shrinkage
, 1992
"... We attempt to recover an unknown function from noisy, sampled data. Using orthonormal bases of compactly supported wavelets we develop a nonlinear method which works in the wavelet domain by simple nonlinear shrinkage of the empirical wavelet coe cients. The shrinkage can be tuned to be nearly minim ..."
Abstract

Cited by 245 (32 self)
 Add to MetaCart
We attempt to recover an unknown function from noisy, sampled data. Using orthonormal bases of compactly supported wavelets we develop a nonlinear method which works in the wavelet domain by simple nonlinear shrinkage of the empirical wavelet coe cients. The shrinkage can be tuned to be nearly minimax over any member of a wide range of Triebel and Besovtype smoothness constraints, and asymptotically minimax over Besov bodies with p q. Linear estimates cannot achieve even the minimax rates over Triebel and Besov classes with p <2, so our method can signi cantly outperform every linear method (kernel, smoothing spline, sieve,:::) in a minimax sense. Variants of our method based on simple threshold nonlinearities are nearly minimax. Our method possesses the interpretation of spatial adaptivity: it reconstructs using a kernel which mayvary in shape and bandwidth from point to point, depending on the data. Least favorable distributions for certain of the Triebel and Besov scales generate objects with sparse wavelet transforms. Many real objects have similarly sparse transforms, which suggests that these minimax results are relevant for practical problems. Sequels to this paper discuss practical implementation, spatial adaptation properties and applications to inverse problems.
Wavelet shrinkage: asymptopia
 Journal of the Royal Statistical Society, Ser. B
, 1995
"... Considerable e ort has been directed recently to develop asymptotically minimax methods in problems of recovering in nitedimensional objects (curves, densities, spectral densities, images) from noisy data. A rich and complex body of work has evolved, with nearly or exactly minimax estimators bein ..."
Abstract

Cited by 238 (35 self)
 Add to MetaCart
Considerable e ort has been directed recently to develop asymptotically minimax methods in problems of recovering in nitedimensional objects (curves, densities, spectral densities, images) from noisy data. A rich and complex body of work has evolved, with nearly or exactly minimax estimators being obtained for a variety of interesting problems. Unfortunately, the results have often not been translated into practice, for a variety of reasons { sometimes, similarity to known methods, sometimes, computational intractability, and sometimes, lack of spatial adaptivity. We discuss a method for curve estimation based on n noisy data; one translates the empirical wavelet coe cients towards the origin by an amount p p 2 log(n) = n. The method is di erent from methods in common use today, is computationally practical, and is spatially adaptive; thus it avoids a number of previous objections to minimax estimators. At the same time, the method is nearly minimax for a wide variety of loss functions { e.g. pointwise error, global error measured in L p norms, pointwise and global error in estimation of derivatives { and for a wide range of smoothness classes, including standard Holder classes, Sobolev classes, and Bounded Variation. This is amuch broader nearoptimality than anything previously proposed in the minimax literature. Finally, the theory underlying the method is interesting, as it exploits a correspondence between statistical questions and questions of optimal recovery and informationbased complexity.
Maximal Spaces with given rate of convergence for thresholding algorithms
, 1999
"... this paper is to discuss the existence and the nature of maximal spaces in the context of nonlinear methods based on thresholding (or shrinkage) procedures. Before going further, some remarks should be made: ..."
Abstract

Cited by 35 (7 self)
 Add to MetaCart
this paper is to discuss the existence and the nature of maximal spaces in the context of nonlinear methods based on thresholding (or shrinkage) procedures. Before going further, some remarks should be made:
Minimax bayes, asymptotic minimax and sparse wavelet priors, in
 Sciences Paris (A
, 1994
"... Pinsker(1980) gave a precise asymptotic evaluation of the minimax mean squared error of estimation of a signal in Gaussian noise when the signal is known a priori to lie in a compact ellipsoid in Hilbert space. This `Minimax Bayes ' method can be applied to a variety of global nonparametric estimat ..."
Abstract

Cited by 35 (9 self)
 Add to MetaCart
Pinsker(1980) gave a precise asymptotic evaluation of the minimax mean squared error of estimation of a signal in Gaussian noise when the signal is known a priori to lie in a compact ellipsoid in Hilbert space. This `Minimax Bayes ' method can be applied to a variety of global nonparametric estimation settings with parameter spaces far from ellipsoidal. For example it leads to a theory of exact asymptotic minimax estimation over norm balls in Besov and Triebel spaces using simple coordinatewise estimators and wavelet bases. This paper outlines some features of the method common to several applications. In particular, we derive new results on the exact asymptotic minimax risk over weak `p balls in Rn as n!1, and also for a class of `local ' estimators on the Triebel scale. By its very nature, the method reveals the structure of asymptotically least favorable distributions. Thus wemaysimulate `least favorable ' sample paths. We illustrate this for estimation of a signal in Gaussian white noise over norm balls in certain Besov spaces. In wavelet bases, when p<2, the least favorable priors are sparse, and the resulting sample paths strikingly di erent from those observed in Pinsker's ellipsoidal setting (p =2).