Results 1 
4 of
4
The concurrency workbench: A semantics based tool for the verification of concurrent systems
 In Proceedings of the Workshop on Automatic Verification Methods for Finite State Machines
, 1991
"... Abstract The Concurrency Workbench is an automated tool for analyzing networks of finitestate processes expressed in Milner's Calculus of Communicating Systems. Its key feature is its breadth: a variety of different verification methods, including equivalence checking, preorder checking, and model ..."
Abstract

Cited by 102 (3 self)
 Add to MetaCart
Abstract The Concurrency Workbench is an automated tool for analyzing networks of finitestate processes expressed in Milner's Calculus of Communicating Systems. Its key feature is its breadth: a variety of different verification methods, including equivalence checking, preorder checking, and model checking, are supported for several different process semantics. One experience from our work is that a large number of interesting verification methods can be formulated as combinations of a small number of primitive algorithms. The Workbench has been applied to the verification of communications protocols and mutual exclusion algorithms and has proven a valuable aid in teaching and research. 1 Introduction This paper describes the Concurrency Workbench [11, 12, 13], a tool that supports the automatic verification of finitestate processes. Such tools are practically motivated: the development of complex distributed computer systems requires sophisticated verification techniques to guarantee correctness, and the increase in detail rapidly becomes unmanageable without computer assistance. Finitestate systems, such as communications protocols and hardware, are particularly suitable for automated analysis because their finitary nature ensures the existence of decision procedures for a wide range of system properties.
Compositional Minimization of Finite State Systems
 IN PROC. 2ND INTERNATIONAL CONFERENCE OF COMPUTERAIDED VERIFICATION
, 1991
"... In this paper we develop a compositional method for the construction of the minimal transition system that represents the semantics of a given reactive system. The point of this method is that it exploits structural properties of the reactive system in order to avoid the consideration of large inter ..."
Abstract

Cited by 36 (0 self)
 Add to MetaCart
In this paper we develop a compositional method for the construction of the minimal transition system that represents the semantics of a given reactive system. The point of this method is that it exploits structural properties of the reactive system in order to avoid the consideration of large intermediate representations. Central is the use of interface specifications here, which express constraints on the components' communication behaviour, and therefore to control the state explosion caused by the interleavings of actions of communicating parallel components. The effect of the method, which is developed for bisimulation semantics here, depends on the structure of the reactive system under consideration, in particular on the accuracy of the interface specifications. However, its correctness does not: every "successful" construction is guaranteed to yield the desired minimal transition system, independently of the correctness of the interface specifications provided by the designer.
Computing Behavioural Relations, Logically
 In Proceedings of 18th International Colloquium on Automata, Languages and Programming
, 1991
"... This paper develops a modelchecking algorithm for a fragment of the modal mucalculus and shows how it may be applied to the efficient computation of behavioral relations between processes. The algorithm's complexity is proportional to the product of the size of the process and the size of the f ..."
Abstract

Cited by 29 (8 self)
 Add to MetaCart
This paper develops a modelchecking algorithm for a fragment of the modal mucalculus and shows how it may be applied to the efficient computation of behavioral relations between processes. The algorithm's complexity is proportional to the product of the size of the process and the size of the formula, and thus improves on the best existing algorithm for such a fixed point logic. The method for computing preorders that the model checker induces is also more efficient than known algorithms.