Results 1  10
of
86
Fast Algorithms for Manipulating Formal Power Series
"... The classical algorithms require order n ~ operations to compute the first n terms in the reversion of a power series or the composition of two series, and order nelog n operations if the fast Founer transform is used for power series multiplication In this paper we show that the composition and r ..."
Abstract

Cited by 106 (9 self)
 Add to MetaCart
The classical algorithms require order n ~ operations to compute the first n terms in the reversion of a power series or the composition of two series, and order nelog n operations if the fast Founer transform is used for power series multiplication In this paper we show that the composition and reversion problems are equivalent (up to constant factors), and we give algorithms which require only order (n log n) ~/2 operations In many cases of practical importance only order n log n operations are required, these include certain special functions of power series and power series solution of certain differential equations Applications to rootfinding methods which use inverse interpolation and to queueing theory are described, some results on multivariate power series are stated, and several open questions are mentioned.
FFTs for the 2SphereImprovements and Variations
 JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS
, 2003
"... Earlier work by Driscoll and Healy [18] has produced an efficient algorithm for computing the Fourier transform of bandlimited functions on the 2sphere. In this article we present a reformulation and variation of the original algorithm which results in a greatly improved inverse transform, and co ..."
Abstract

Cited by 104 (2 self)
 Add to MetaCart
Earlier work by Driscoll and Healy [18] has produced an efficient algorithm for computing the Fourier transform of bandlimited functions on the 2sphere. In this article we present a reformulation and variation of the original algorithm which results in a greatly improved inverse transform, and consequent improved convolution algorithm for such functions. All require at most O(N log2 N)operations where N is the number of sample points. We also address implementation considerations and give heuristics for allowing reliable and computationally efficient floating point implementations of slightly modified algorithms. These claims are supported by extensive numerical experiments from our implementation in C on DEC, HP, SGI and Linux Pentium platforms. These results indicate that variations of the algorithm are both reliable and efficient for a large range of useful problem sizes. Performance appears to be architecturedependent. The article concludes with a brief discussion of a few potential applications.
On relating time and space to size and depth
 SIAM Journal on Computing
, 1977
"... Abstract. Turing machine space complexity is related to circuit depth complexity. The relationship complements the known connection between Turing machine time and circuit size, thus enabling us to expose the related nature of some important open problems concerning Turing machine and circuit comple ..."
Abstract

Cited by 97 (1 self)
 Add to MetaCart
Abstract. Turing machine space complexity is related to circuit depth complexity. The relationship complements the known connection between Turing machine time and circuit size, thus enabling us to expose the related nature of some important open problems concerning Turing machine and circuit complexity. We are also able to show some connection between Turing machine complexity and arithmetic complexity.
Discrete Logarithms in Finite Fields and Their Cryptographic Significance
, 1984
"... Given a primitive element g of a finite field GF(q), the discrete logarithm of a nonzero element u GF(q) is that integer k, 1 k q  1, for which u = g k . The wellknown problem of computing discrete logarithms in finite fields has acquired additional importance in recent years due to its appl ..."
Abstract

Cited by 87 (6 self)
 Add to MetaCart
Given a primitive element g of a finite field GF(q), the discrete logarithm of a nonzero element u GF(q) is that integer k, 1 k q  1, for which u = g k . The wellknown problem of computing discrete logarithms in finite fields has acquired additional importance in recent years due to its applicability in cryptography. Several cryptographic systems would become insecure if an efficient discrete logarithm algorithm were discovered. This paper surveys and analyzes known algorithms in this area, with special attention devoted to algorithms for the fields GF(2 n ). It appears that in order to be safe from attacks using these algorithms, the value of n for which GF(2 n ) is used in a cryptosystem has to be very large and carefully chosen. Due in large part to recent discoveries, discrete logarithms in fields GF(2 n ) are much easier to compute than in fields GF(p) with p prime. Hence the fields GF(2 n ) ought to be avoided in all cryptographic applications. On the other hand, ...
A Gröbner free alternative for polynomial system solving
 Journal of Complexity
, 2001
"... Given a system of polynomial equations and inequations with coefficients in the field of rational numbers, we show how to compute a geometric resolution of the set of common roots of the system over the field of complex numbers. A geometric resolution consists of a primitive element of the algebraic ..."
Abstract

Cited by 82 (16 self)
 Add to MetaCart
Given a system of polynomial equations and inequations with coefficients in the field of rational numbers, we show how to compute a geometric resolution of the set of common roots of the system over the field of complex numbers. A geometric resolution consists of a primitive element of the algebraic extension defined by the set of roots, its minimal polynomial and the parametrizations of the coordinates. Such a representation of the solutions has a long history which goes back to Leopold Kronecker and has been revisited many times in computer algebra. We introduce a new generation of probabilistic algorithms where all the computations use only univariate or bivariate polynomials. We give a new codification of the set of solutions of a positive dimensional algebraic variety relying on a new global version of Newton’s iterator. Roughly speaking the complexity of our algorithm is polynomial in some kind of degree of the system, in its height, and linear in the complexity of evaluation
Models of Computation  Exploring the Power of Computing
"... Theoretical computer science treats any computational subject for which a good model can be created. Research on formal models of computation was initiated in the 1930s and 1940s by Turing, Post, Kleene, Church, and others. In the 1950s and 1960s programming languages, language translators, and oper ..."
Abstract

Cited by 57 (7 self)
 Add to MetaCart
Theoretical computer science treats any computational subject for which a good model can be created. Research on formal models of computation was initiated in the 1930s and 1940s by Turing, Post, Kleene, Church, and others. In the 1950s and 1960s programming languages, language translators, and operating systems were under development and therefore became both the subject and basis for a great deal of theoretical work. The power of computers of this period was limited by slow processors and small amounts of memory, and thus theories (models, algorithms, and analysis) were developed to explore the efficient use of computers as well as the inherent complexity of problems. The former subject is known today as algorithms and data structures, the latter computational complexity. The focus of theoretical computer scientists in the 1960s on languages is reflected in the first textbook on the subject, Formal Languages and Their Relation to Automata by John Hopcroft and Jeffrey Ullman. This influential book led to the creation of many languagecentered theoretical computer science courses; many introductory theory courses today continue to reflect the content of this book and the interests of theoreticians of the 1960s and early 1970s. Although
Nearly Optimal Algorithms For Canonical Matrix Forms
, 1993
"... A Las Vegas type probabilistic algorithm is presented for finding the Frobenius canonical form of an n x n matrix T over any field K. The algorithm requires O~(MM(n)) = MM(n) (log n) ^ O(1) operations in K, where O(MM(n)) operations in K are sufficient to multiply two n x n matrices over K. This nea ..."
Abstract

Cited by 56 (11 self)
 Add to MetaCart
A Las Vegas type probabilistic algorithm is presented for finding the Frobenius canonical form of an n x n matrix T over any field K. The algorithm requires O~(MM(n)) = MM(n) (log n) ^ O(1) operations in K, where O(MM(n)) operations in K are sufficient to multiply two n x n matrices over K. This nearly matches the lower bound of \Omega(MM(n)) operations in K for this problem, and improves on the O(n^4) operations in K required by the previously best known algorithms. We also demonstrate a fast parallel implementation of our algorithm for the Frobenius form, which is processorefficient on a PRAM. As an application we give an algorithm to evaluate a polynomial g(x) in K[x] at T which requires only O~(MM(n)) operations in K when deg g < n^2. Other applications include sequential and parallel algorithms for computing the minimal and characteristic polynomials of a matrix, the rational Jordan form of a matrix, for testing whether two matrices are similar, and for matrix powering, which are substantially faster than those previously known.
Generalized FFTs  A Survey Of Some Recent Results
, 1995
"... In this paper we survey some recent work directed towards generalizing the fast Fourier transform (FFT). We work primarily from the point of view of group representation theory. In this setting the classical FFT can be viewed as a family of efficient algorithms for computing the Fourier transform of ..."
Abstract

Cited by 51 (8 self)
 Add to MetaCart
In this paper we survey some recent work directed towards generalizing the fast Fourier transform (FFT). We work primarily from the point of view of group representation theory. In this setting the classical FFT can be viewed as a family of efficient algorithms for computing the Fourier transform of either a function defined on a finite abelian group, or a bandlimited function on a compact abelian group. We discuss generalizations of the FFT to arbitrary finite groups and compact Lie groups.
Some integer factorization algorithms using elliptic curves
 Australian Computer Science Communications
, 1986
"... Lenstra’s integer factorization algorithm is asymptotically one of the fastest known algorithms, and is also ideally suited for parallel computation. We suggest a way in which the algorithm can be speeded up by the addition of a second phase. Under some plausible assumptions, the speedup is of order ..."
Abstract

Cited by 47 (13 self)
 Add to MetaCart
Lenstra’s integer factorization algorithm is asymptotically one of the fastest known algorithms, and is also ideally suited for parallel computation. We suggest a way in which the algorithm can be speeded up by the addition of a second phase. Under some plausible assumptions, the speedup is of order log(p), where p is the factor which is found. In practice the speedup is significant. We mention some refinements which give greater speedup, an alternative way of implementing a second phase, and the connection with Pollard’s “p − 1” factorization algorithm. 1