Results 1  10
of
35
Structural Cut Elimination  I. Intuitionistic and Classical Logic
 Information and Computation
, 2000
"... this paper we present new proofs of cut elimination for intuitionistic and classical sequent calculi and give their representations in the logical framework LF [HHP93] as implemented in the Elf system [Pfe91]. Multisets are avoided altogether in these proofs, and termination measures are replaced b ..."
Abstract

Cited by 53 (17 self)
 Add to MetaCart
this paper we present new proofs of cut elimination for intuitionistic and classical sequent calculi and give their representations in the logical framework LF [HHP93] as implemented in the Elf system [Pfe91]. Multisets are avoided altogether in these proofs, and termination measures are replaced by three nested structural inductions. Parameters are treated as variables bound in derivations, thus naturally capturing occurrence conditions. A starting point for the proofs is Kleene's sequent system G 3 [Kle52], which we derive systematically from the point of view that a sequent calculus should be a calculus of proof search for natural deductions. It can easily be related to Gentzen's original and other sequent calculi. We augment G 3 with proof terms that are stable under weakening. These proof terms enable the structural induction and furthermore form the basis of the representation of the proof in LF. The most closely related work on cut elimination is MartinLo# f 's proof of admissibility [ML68]. In MartinLo# f 's system the cut rule incorporates aspects of both weakening and contraction which enables a structural induction argument closely related to ours. However, without the introduction of proof terms, the implicit weakening in the cut rule makes it difficult to implement this proof directly. Herbelin [Her95] restates this proof and proceeds by assigning proof terms only to restricted sequent calculi LJT and LKT which correspond more immediately to
Strong Normalisation of CutElimination in Classical Logic
, 2000
"... In this paper we present a strongly normalising cutelimination procedure for classical logic. This procedure adapts Gentzen's standard cutreductions, but is less restrictive than previous strongly normalising cutelimination procedures. In comparison, for example, with works by Dragalin and Danos ..."
Abstract

Cited by 35 (4 self)
 Add to MetaCart
In this paper we present a strongly normalising cutelimination procedure for classical logic. This procedure adapts Gentzen's standard cutreductions, but is less restrictive than previous strongly normalising cutelimination procedures. In comparison, for example, with works by Dragalin and Danos et al., our procedure requires no special annotations on formulae and allows cutrules to pass over other cutrules. In order to adapt the notion of symmetric reducibility candidates for proving the strong normalisation property, we introduce a novel term assignment for sequent proofs of classical logic and formalise cutreductions as term rewriting rules.
Permutability of Proofs in Intuitionistic Sequent Calculi
, 1996
"... We prove a folklore theorem, that two derivations in a cutfree sequent calculus for intuitionistic propositional logic (based on Kleene's G3) are interpermutable (using a set of basic "permutation reduction rules" derived from Kleene's work in 1952) iff they determine the same natural deductio ..."
Abstract

Cited by 23 (4 self)
 Add to MetaCart
We prove a folklore theorem, that two derivations in a cutfree sequent calculus for intuitionistic propositional logic (based on Kleene's G3) are interpermutable (using a set of basic "permutation reduction rules" derived from Kleene's work in 1952) iff they determine the same natural deduction. The basic rules form a confluent and weakly normalising rewriting system. We refer to Schwichtenberg's proof elsewhere that a modification of this system is strongly normalising. Key words: intuitionistic logic, proof theory, natural deduction, sequent calculus. 1 Introduction There is a folklore theorem that two intuitionistic sequent calculus derivations are "really the same" iff they are interpermutable, using permutations as described by Kleene in [13]. Our purpose here is to make precise and prove such a "permutability theorem". Prawitz [18] showed how intuitionistic sequent calculus derivations determine natural deductions, via a mapping ' from LJ to NJ (here we consider only ...
Termination of permutative conversions in intuitionistic Gentzen calculi
, 1997
"... It is shown that permutative conversions terminate for the cutfree intuitionistic Gentzen (i.e. sequent) calculus; this proves a conjecture by Dyckhoff and Pinto. The main technical tool is a term notation for derivations in Gentzen calculi. These terms may be seen as terms with explicit substitut ..."
Abstract

Cited by 19 (0 self)
 Add to MetaCart
It is shown that permutative conversions terminate for the cutfree intuitionistic Gentzen (i.e. sequent) calculus; this proves a conjecture by Dyckhoff and Pinto. The main technical tool is a term notation for derivations in Gentzen calculi. These terms may be seen as terms with explicit substitution, where the latter corresponds to the left introduction rules.
On the Intuitionistic Force of Classical Search
 THEORETICAL COMPUTER SCIENCE
, 1996
"... The combinatorics of classical propositional logic lies at the heart of both local and global methods of proofsearch enabling the achievement of leastcommitment search. Extension of such methods to the predicate calculus, or to nonclassical systems, presents us with the problem of recovering ..."
Abstract

Cited by 19 (5 self)
 Add to MetaCart
The combinatorics of classical propositional logic lies at the heart of both local and global methods of proofsearch enabling the achievement of leastcommitment search. Extension of such methods to the predicate calculus, or to nonclassical systems, presents us with the problem of recovering this leastcommitment principle in the context of noninvertible rules. One successful approach is to view the nonclassical logic as a perturbation on search in classical logic and characterize when a leastcommitment (classical) search yields sufficient evidence for provability in the (nonclassical) logic. This technique has been successfully applied to both local and global methods at the cost of subsidiary searches and is the analogue of the standard treatment of quantifiers via skolemization and unification. In this paper, we take a typetheoretic view of this approach for the case in which the nonclassical logic is intuitionistic. We develop a system of realizers (proofobje...
A Structural Proof of Cut Elimination and Its Representation in a Logical Framework
, 1994
"... We present new proofs of cut elimination for intuitionistic and classical sequent calculi. In both cases the proofs proceed by three nested structural inductions, avoiding the explicit use of multisets and termination measures on sequent derivations. This makes them amenable to elegant and concise r ..."
Abstract

Cited by 17 (4 self)
 Add to MetaCart
We present new proofs of cut elimination for intuitionistic and classical sequent calculi. In both cases the proofs proceed by three nested structural inductions, avoiding the explicit use of multisets and termination measures on sequent derivations. This makes them amenable to elegant and concise representations in LF, which are given in full detail. This work was supported by NSF Grant CCR9303383 The views and conclusions contained in this document are those of the author and should not be interpreted as representing the official policies, either expressed or implied, of NSF or the U.S. government. Keywords: Logic, Cut Elimination, Logical Framework Contents 1 Introduction 1 2 Intuitionistic Sequent Calculus 2 3 Proof Terms for the Sequent Calculus 8 4 Representing Sequent Derivations in LF 10 5 Admissibility of Cut 13 6 Extension to Classical Logic 18 7 Conclusion 24 A Detailed Admissibility Proofs for Cut 26 A.1 Intuitionistic Calculus : : : : : : : : : : : : : : : : : : :...
Normal Forms and CutFree Proofs as Natural Transformations
 in : Logic From Computer Science, Mathematical Science Research Institute Publications 21
, 1992
"... What equations can we guarantee that simple functional programs must satisfy, irrespective of their obvious defining equations? Equivalently, what nontrivial identifications must hold between lambda terms, thoughtof as encoding appropriate natural deduction proofs ? We show that the usual syntax g ..."
Abstract

Cited by 12 (4 self)
 Add to MetaCart
What equations can we guarantee that simple functional programs must satisfy, irrespective of their obvious defining equations? Equivalently, what nontrivial identifications must hold between lambda terms, thoughtof as encoding appropriate natural deduction proofs ? We show that the usual syntax guarantees that certain naturality equations from category theory are necessarily provable. At the same time, our categorical approach addresses an equational meaning of cutelimination and asymmetrical interpretations of cutfree proofs. This viewpoint is connected to Reynolds' relational interpretation of parametricity ([27], [2]), and to the KellyLambekMac LaneMints approach to coherence problems in category theory. 1 Introduction In the past several years, there has been renewed interest and research into the interconnections of proof theory, typed lambda calculus (as a functional programming paradigm) and category theory. Some of these connections can be surprisingly subtle. Here we a...
Proof Theory for Authorization Logic and its Application to a Practical File System
, 2009
"... In most computer systems users ’ access to resources is controlled using authorization policies. It well known that logic is an appropriate medium for representing, understanding, and enforcing authorization policies, yet despite several years of pragmatic work on the subject, the foundations of rel ..."
Abstract

Cited by 12 (5 self)
 Add to MetaCart
In most computer systems users ’ access to resources is controlled using authorization policies. It well known that logic is an appropriate medium for representing, understanding, and enforcing authorization policies, yet despite several years of pragmatic work on the subject, the foundations of relevant logics remain unexplored and poorly understood. It is in this realm that the work of this thesis lies; the thesis explores the theory of logics for expressing authorization policies as well as applications of the theory in practice. In doing so, it makes three foundational and technically challenging contributions. First, the thesis introduces proof theory and metatheory in the context of authorization logics, illustrated through a new logic BL. In particular, structural prooftheoretic systems of natural deduction and sequent calculus are investigated and their importance explained. Pragmatic problems like proof verification and automatic proof search are then addressed using the sound foundations of proof theory. Second, the thesis considers a logical treatment of dynamism in authorization policies and in particular, logical constructs for representing authorizations depending on system state, consumable credentials, and explicit time are presented. Further, a practical, efficient,
Completing Herbelin’s programme
"... In 1994 Herbelin started and partially achieved the programme of showing that, for intuitionistic implicational logic, there is a CurryHoward interpretation of sequent calculus into a variant of the λcalculus, specifically a variant which manipulates formally “applicative contexts” and inverts t ..."
Abstract

Cited by 8 (4 self)
 Add to MetaCart
In 1994 Herbelin started and partially achieved the programme of showing that, for intuitionistic implicational logic, there is a CurryHoward interpretation of sequent calculus into a variant of the λcalculus, specifically a variant which manipulates formally “applicative contexts” and inverts the associativity of “applicative terms”. Herbelin worked with a fragment of sequent calculus with constraints on left introduction. In this paper we complete Herbelin’s programme for full sequent calculus, that is, sequent calculus without the mentioned constraints, but where permutative conversions necessarily show up. This requires the introduction of a lambdalike calculus for full sequent calculus and an extension of natural deduction that gives meaning to “applicative contexts” and “applicative terms”. Such extension is a calculus with modus ponens and primitive substitution that refines von Plato’s natural deduction; it is also a “coercion calculus”, in the sense of Cervesato and Pfenning. The prooftheoretical outcome is noteworthy: the puzzling relationship between cut and substitution is settled; and cutelimination in sequent calculus is proven isomorphic to normalisation in the proposed natural deduction system. The isomorphism is the mapping that inverts the associativity of applicative terms.