Results 1  10
of
114
Computational Interpretations of Linear Logic
 Theoretical Computer Science
, 1993
"... We study Girard's Linear Logic from the point of view of giving a concrete computational interpretation of the logic, based on the CurryHoward isomorphism. In the case of Intuitionistic Linear Logic, this leads to a refinement of the lambda calculus, giving finer control over order of evaluation an ..."
Abstract

Cited by 280 (3 self)
 Add to MetaCart
We study Girard's Linear Logic from the point of view of giving a concrete computational interpretation of the logic, based on the CurryHoward isomorphism. In the case of Intuitionistic Linear Logic, this leads to a refinement of the lambda calculus, giving finer control over order of evaluation and storage allocation, while maintaining the logical content of programs as proofs, and computation as cutelimination.
Typed closure conversion
 In Proceedings of the 23th Symposium on Principles of Programming Languages (POPL
, 1996
"... The views and conclusions contained in this document are those of the authors and should not be interpreted as representing o cial policies, either expressed or implied, of the Advanced Research Projects Agency or the U.S. Government. Any opinions, ndings, and conclusions or recommendations expresse ..."
Abstract

Cited by 154 (22 self)
 Add to MetaCart
The views and conclusions contained in this document are those of the authors and should not be interpreted as representing o cial policies, either expressed or implied, of the Advanced Research Projects Agency or the U.S. Government. Any opinions, ndings, and conclusions or recommendations expressed in this material are those of the We study the typing properties of closure conversion for simplytyped and polymorphiccalculi. Unlike most accounts of closure conversion, which only treat the untypedcalculus, we translate welltyped source programs to welltyped target programs. This allows later compiler phases to take advantage of types for representation analysis and tagfree garbage collection, and it facilitates correctness proofs. Our account of closure conversion for the simplytyped language takes advantage of a simple model of objects by mapping closures to existentials. Closure conversion for the polymorphic language requires additional type machinery, namely translucency in the style of Harper and Lillibridge's module calculus, to express the type of a closure.
Type Inference with Polymorphic Recursion
 Transactions on Programming Languages and Systems
, 1991
"... The DamasMilner Calculus is the typed Acalculus underlying the type system for ML and several other strongly typed polymorphic functional languages such as Mirandal and Haskell. Mycroft has extended its problematic monomorphic typing rule for recursive definitions with a polymorphic typing rule. H ..."
Abstract

Cited by 135 (0 self)
 Add to MetaCart
The DamasMilner Calculus is the typed Acalculus underlying the type system for ML and several other strongly typed polymorphic functional languages such as Mirandal and Haskell. Mycroft has extended its problematic monomorphic typing rule for recursive definitions with a polymorphic typing rule. He proved the resulting type system, which we call the MilnerMycroft Calculus, sound with respect to Milner’s semantics, and showed that it preserves the principal typing property of the DamasMilner Calculus. The extension is of practical significance in typed logic programming languages and, more generally, in any language with (mutually) recursive definitions. In this paper we show that the type inference problem for the MilnerMycroft Calculus is logspace equivalent to semiunification, the problem of solving subsumption inequations between firstorder terms. This result has been proved independently by Kfoury et al. In connection with the recently established undecidability of semiunification this implies that typability in the MilnerMycroft Calculus is undecidable. We present some reasons why type inference with polymorphic recursion appears to be practical despite its undecidability. This also sheds some light on the observed practicality of ML
Interaction Categories and the Foundations of Typed Concurrent Programming
 In Deductive Program Design: Proceedings of the 1994 Marktoberdorf Summer School, NATO ASI Series F
, 1995
"... We propose Interaction Categories as a new paradigm for the semantics of functional and concurrent computation. Interaction categories have specifications as objects, processes as morphisms, and interaction as composition. We introduce two key examples of interaction categories for concurrent compu ..."
Abstract

Cited by 123 (19 self)
 Add to MetaCart
We propose Interaction Categories as a new paradigm for the semantics of functional and concurrent computation. Interaction categories have specifications as objects, processes as morphisms, and interaction as composition. We introduce two key examples of interaction categories for concurrent computation and indicate how a general axiomatisation can be developed. The upshot of our approach is that traditional process calculus is reconstituted in functorial form, and integrated with type theory and functional programming.
Nominal techniques in Isabelle/HOL
 Proceedings of the 20th International Conference on Automated Deduction (CADE20
, 2005
"... Abstract. In this paper we define an inductive set that is bijective with the ffequated lambdaterms. Unlike deBruijn indices, however, our inductive definition includes names and reasoning about this definition is very similar to informal reasoning on paper. For this we provide a structural induc ..."
Abstract

Cited by 80 (12 self)
 Add to MetaCart
Abstract. In this paper we define an inductive set that is bijective with the ffequated lambdaterms. Unlike deBruijn indices, however, our inductive definition includes names and reasoning about this definition is very similar to informal reasoning on paper. For this we provide a structural induction principle that requires to prove the lambdacase for fresh binders only. The main technical novelty of this work is that it is compatible with the axiomofchoice (unlike earlier nominal logic work by Pitts et al); thus we were able to implement all results in Isabelle/HOL and use them to formalise the standard proofs for ChurchRosser and strongnormalisation. Keywords. Lambdacalculus, nominal logic, structural induction, theoremassistants.
Computational types from a logical perspective
 Journal of Functional Programming
, 1998
"... Moggi’s computational lambda calculus is a metalanguage for denotational semantics which arose from the observation that many different notions of computation have the categorical structure of a strong monad on a cartesian closed category. In this paper we show that the computational lambda calculus ..."
Abstract

Cited by 54 (6 self)
 Add to MetaCart
Moggi’s computational lambda calculus is a metalanguage for denotational semantics which arose from the observation that many different notions of computation have the categorical structure of a strong monad on a cartesian closed category. In this paper we show that the computational lambda calculus also arises naturally as the term calculus corresponding (by the CurryHoward correspondence) to a novel intuitionistic modal propositional logic. We give natural deduction, sequent calculus and Hilbertstyle presentations of this logic and prove strong normalisation and confluence results. 1
Finiteness spaces
 Mathematical Structures in Computer Science
, 1987
"... We investigate a new denotational model of linear logic based on the purely relational model. In this semantics, webs are equipped with a notion of “finitary ” subsets satisfying a closure condition and proofs are interpreted as finitary sets. In spite of a formal similarity, this model is quite dif ..."
Abstract

Cited by 53 (13 self)
 Add to MetaCart
We investigate a new denotational model of linear logic based on the purely relational model. In this semantics, webs are equipped with a notion of “finitary ” subsets satisfying a closure condition and proofs are interpreted as finitary sets. In spite of a formal similarity, this model is quite different from the usual models of linear logic (coherence semantics, hypercoherence semantics, the various existing game semantics...). In particular, the standard fixpoint operators used for defining the general recursive functions are not finitary, although the primitive recursion operators are. This model can be considered as a discrete version of the Köthe space semantics introduced in a previous paper: we show how, given a field, each finiteness space gives rise to a vector space endowed with a linear topology, a notion introduced by Lefschetz in 1942, and we study the corresponding model where morphisms are linear continuous maps (a version of Girard’s quantitative semantics with coefficients in the field). We obtain in that way a new model of the recently introduced differential lambdacalculus. Notations. If S is a set, we denote by M(S) = N S the set of all multisets over S. If µ ∈ M(S), µ denotes the support of µ which is the set of all a ∈ S such that µ(a) ̸ = 0. A multiset is finite if it has a finite support. If a1,..., an are elements of some given set S, we denote by [a1,..., an] the corresponding multiset over S. The usual operations on natural numbers are extended to multisets pointwise. If (Si)i∈I are sets, we denote by πi the ith projection πi: ∏ j∈I Sj → Si.
Strong Normalisation of CutElimination in Classical Logic
, 2000
"... In this paper we present a strongly normalising cutelimination procedure for classical logic. This procedure adapts Gentzen's standard cutreductions, but is less restrictive than previous strongly normalising cutelimination procedures. In comparison, for example, with works by Dragalin and Danos ..."
Abstract

Cited by 35 (4 self)
 Add to MetaCart
In this paper we present a strongly normalising cutelimination procedure for classical logic. This procedure adapts Gentzen's standard cutreductions, but is less restrictive than previous strongly normalising cutelimination procedures. In comparison, for example, with works by Dragalin and Danos et al., our procedure requires no special annotations on formulae and allows cutrules to pass over other cutrules. In order to adapt the notion of symmetric reducibility candidates for proving the strong normalisation property, we introduce a novel term assignment for sequent proofs of classical logic and formalise cutreductions as term rewriting rules.