Results 1  10
of
48
Games and Full Completeness for Multiplicative Linear Logic
 JOURNAL OF SYMBOLIC LOGIC
, 1994
"... We present a game semantics for Linear Logic, in which formulas denote games and proofs denote winning strategies. We show that our semantics yields a categorical model of Linear Logic and prove full completeness for Multiplicative Linear Logic with the MIX rule: every winning strategy is the den ..."
Abstract

Cited by 209 (26 self)
 Add to MetaCart
We present a game semantics for Linear Logic, in which formulas denote games and proofs denote winning strategies. We show that our semantics yields a categorical model of Linear Logic and prove full completeness for Multiplicative Linear Logic with the MIX rule: every winning strategy is the denotation of a unique cutfree proof net. A key role is played by the notion of historyfree strategy; strong connections are made between historyfree strategies and the Geometry of Interaction. Our semantics incorporates a natural notion of polarity, leading to a refined treatment of the additives. We make comparisons with related work by Joyal, Blass et al.
A syntax for linear logic
 Presented at Conference on Mathematical Foundations of Programming Language Semantics
, 1993
"... Abstract. This tutorial paper provides an introduction to intuitionistic logic and linear logic, and shows how they correspond to type systems for functional languages via the notion of ‘Propositions as Types’. The presentation of linear logic is simplified by basing it on the Logic of Unity. An app ..."
Abstract

Cited by 71 (5 self)
 Add to MetaCart
Abstract. This tutorial paper provides an introduction to intuitionistic logic and linear logic, and shows how they correspond to type systems for functional languages via the notion of ‘Propositions as Types’. The presentation of linear logic is simplified by basing it on the Logic of Unity. An application to the array update problem is briefly discussed. 1
A Brief Guide to Linear Logic
, 1993
"... An overview of linear logic is given, including an extensive bibliography and a simple example of the close relationship between linear logic and computation. ..."
Abstract

Cited by 53 (8 self)
 Add to MetaCart
An overview of linear logic is given, including an extensive bibliography and a simple example of the close relationship between linear logic and computation.
Applications of Linear Logic to Computation: An Overview
, 1993
"... This paper is an overview of existing applications of Linear Logic (LL) to issues of computation. After a substantial introduction to LL, it discusses the implications of LL to functional programming, logic programming, concurrent and objectoriented programming and some other applications of LL, li ..."
Abstract

Cited by 41 (3 self)
 Add to MetaCart
This paper is an overview of existing applications of Linear Logic (LL) to issues of computation. After a substantial introduction to LL, it discusses the implications of LL to functional programming, logic programming, concurrent and objectoriented programming and some other applications of LL, like semantics of negation in LP, nonmonotonic issues in AI planning, etc. Although the overview covers pretty much the stateoftheart in this area, by necessity many of the works are only mentioned and referenced, but not discussed in any considerable detail. The paper does not presuppose any previous exposition to LL, and is addressed more to computer scientists (probably with a theoretical inclination) than to logicians. The paper contains over 140 references, of which some 80 are about applications of LL. 1 Linear Logic Linear Logic (LL) was introduced in 1987 by Girard [62]. From the very beginning it was recognized as relevant to issues of computation (especially concurrency and stat...
Fair Games and Full Completeness for Multiplicative Linear Logic without the MIXRule
, 1993
"... We introduce a new category of finite, fair games, and winning strategies, and use it to provide a semantics for the multiplicative fragment of Linear Logic (mll) in which formulae are interpreted as games, and proofs as winning strategies. This interpretation provides a categorical model of mll wh ..."
Abstract

Cited by 40 (4 self)
 Add to MetaCart
We introduce a new category of finite, fair games, and winning strategies, and use it to provide a semantics for the multiplicative fragment of Linear Logic (mll) in which formulae are interpreted as games, and proofs as winning strategies. This interpretation provides a categorical model of mll which satisfies the property that every (historyfree, uniformly) winning strategy is the denotation of a unique cutfree proof net. Abramsky and Jagadeesan first proved a result of this kind and they refer to this property as full completeness. Our result differs from theirs in one important aspect: the mixrule, which is not part of Girard's Linear Logic, is invalidated in our model. We achieve this sharper characterization by considering fair games. A finite, fair game is specified by the following data: ffl moves which Player can play, ffl moves which Opponent can play, and ffl a collection of finite sequences of maximal (or terminal) positions of the game which are deemed to be fair. N...
Focusing the inverse method for linear logic
 Proceedings of CSL 2005
, 2005
"... 1.1 Quantification and the subformula property.................. 3 1.2 Ground forward sequent calculus......................... 5 1.3 Lifting to free variables............................... 10 ..."
Abstract

Cited by 37 (11 self)
 Add to MetaCart
1.1 Quantification and the subformula property.................. 3 1.2 Ground forward sequent calculus......................... 5 1.3 Lifting to free variables............................... 10
Gates accept concurrent behavior
 In Proc. 34th Ann. IEEE Symp. on Foundations of Comp. Sci
, 1993
"... We represent concurrent processes as Boolean propositions or gates, cast in the role of acceptors of concurrent behavior. This properly extends other mainstream representations of concurrent behavior such as event structures, yet is defined more simply. It admits an intrinsic notion of duality that ..."
Abstract

Cited by 32 (16 self)
 Add to MetaCart
We represent concurrent processes as Boolean propositions or gates, cast in the role of acceptors of concurrent behavior. This properly extends other mainstream representations of concurrent behavior such as event structures, yet is defined more simply. It admits an intrinsic notion of duality that permits processes to be viewed as either schedules or automata. Its algebraic structure is essentially that of linear logic, with its morphisms being consequencepreserving renamings of propositions, and with its operations forming the core of a natural concurrent programming language. 1
Chu spaces and their interpretation as concurrent objects
, 2005
"... A Chu space is a binary relation =  from a set A to an antiset X defined as a set which transforms via converse functions. Chu spaces admit a great many interpretations by virtue of realizing all small concrete categories and most large ones arising in mathematical and computational practice. Of pa ..."
Abstract

Cited by 21 (0 self)
 Add to MetaCart
A Chu space is a binary relation =  from a set A to an antiset X defined as a set which transforms via converse functions. Chu spaces admit a great many interpretations by virtue of realizing all small concrete categories and most large ones arising in mathematical and computational practice. Of particular interest for computer science is their interpretation as computational processes, which takes A to be a schedule of events distributed in time, X to be an automaton of states forming an information system in the sense of Scott, and the pairs (a, x) in the =  relation to be the individual transcriptions of the making of history. The traditional homogeneous binary relations of transition on X and precedence on A are recovered as respectively the right and left residuals of the heterogeneous binary relation =  with itself. The natural algebra of Chu spaces is that of linear logic, made a process algebra by the process interpretation.
Full completeness of the multiplicative linear logic of chu spaces
 Proc. IEEE Logic in Computer Science 14
, 1999
"... We prove full completeness of multiplicative linear logic (MLL) without MIX under the Chu interpretation. In particular we show that the cutfree proofs of MLL theorems are in a natural bijection with the binary logical transformations of the corresponding operations on the category of Chu spaces on ..."
Abstract

Cited by 21 (8 self)
 Add to MetaCart
We prove full completeness of multiplicative linear logic (MLL) without MIX under the Chu interpretation. In particular we show that the cutfree proofs of MLL theorems are in a natural bijection with the binary logical transformations of the corresponding operations on the category of Chu spaces on a twoletter alphabet. This is the online version of the paper of the same title appearing in the LICS’99 proceedings. 1