Results 1  10
of
44
Focusing the inverse method for linear logic
 Proceedings of CSL 2005
, 2005
"... 1.1 Quantification and the subformula property.................. 3 1.2 Ground forward sequent calculus......................... 5 1.3 Lifting to free variables............................... 10 ..."
Abstract

Cited by 38 (11 self)
 Add to MetaCart
1.1 Quantification and the subformula property.................. 3 1.2 Ground forward sequent calculus......................... 5 1.3 Lifting to free variables............................... 10
Session Types as Intuitionistic Linear Propositions
"... Several type disciplines for πcalculi have been proposed in which linearity plays a key role, even if their precise relationship with pure linear logic is still not well understood. In this paper, we introduce a type system for the πcalculus that exactly corresponds to the standard sequent calculu ..."
Abstract

Cited by 26 (14 self)
 Add to MetaCart
Several type disciplines for πcalculi have been proposed in which linearity plays a key role, even if their precise relationship with pure linear logic is still not well understood. In this paper, we introduce a type system for the πcalculus that exactly corresponds to the standard sequent calculus proof system for dual intuitionistic linear logic. Our type system is based on a new interpretation of linear propositions as session types, and provides the first purely logical account of all (both shared and linear) features of session types. We show that our type discipline is useful from a programming perspective, and ensures session fidelity, absence of deadlocks, and a tight operational correspondence between πcalculus reductions and cut elimination steps. 1
Consumable Credentials in LogicBased Access Control
 CARNEGIE MELLON UNIVERSITY
, 2006
"... We present a framework to support consumable credentials in a logicbased distributed authorization system. Such credentials convey uselimited authority (e.g., to open a door once) or authority to utilize resources that are themselves limited (e.g., to spend money). We design a framework based ..."
Abstract

Cited by 21 (8 self)
 Add to MetaCart
We present a framework to support consumable credentials in a logicbased distributed authorization system. Such credentials convey uselimited authority (e.g., to open a door once) or authority to utilize resources that are themselves limited (e.g., to spend money). We design a framework based on linear logic to enforce the consumption of credentials in a distributed system, and to protect credentials from nonproductive consumption as might result from misbehavior or failure. Finally, we give several usage examples in the framework, and evaluate the performance of our implementation for use in a ubiquitous computing deployment at our institution.
Hybridizing a logical framework
 In International Workshop on Hybrid Logic 2006 (HyLo 2006), Electronic Notes in Computer Science
, 2006
"... The logical framework LF is a constructive type theory of dependent functions that can elegantly encode many other logical systems. Prior work has studied the benefits of extending it to the linear logical framework LLF, for the incorporation linear logic features into the type theory affords good r ..."
Abstract

Cited by 20 (1 self)
 Add to MetaCart
The logical framework LF is a constructive type theory of dependent functions that can elegantly encode many other logical systems. Prior work has studied the benefits of extending it to the linear logical framework LLF, for the incorporation linear logic features into the type theory affords good representations of state change. We describe and argue for the usefulness of an extension of LF by features inspired by hybrid logic, which has several benefits. For one, it shows how linear logic features can be decomposed into primitive operations manipulating abstract resource labels. More importantly, it makes it possible to realize a metalogical framework capable of reasoning about stateful deductive systems encoded in the style familiar from prior work with LLF, taking advantage of familiar methodologies used for metatheoretic reasoning in LF.Acknowledgments From the very first computer science course I took at CMU, Frank Pfenning has been an exceptional teacher and mentor. For his patience, breadth of knowledge, and mathematical good taste I am extremely thankful. No less do I owe to the other two major contributors to my programming languages
A proofcarrying file system
, 2009
"... This paper presents the design and implementation of PCFS, a file system that uses formal proofs and capabilities to efficiently enforce access policies expressed in a rich logic. Salient features include backwards compatibility with existing programs and automatic enforcement of access rules that d ..."
Abstract

Cited by 19 (10 self)
 Add to MetaCart
This paper presents the design and implementation of PCFS, a file system that uses formal proofs and capabilities to efficiently enforce access policies expressed in a rich logic. Salient features include backwards compatibility with existing programs and automatic enforcement of access rules that depend on both time and system state. We rigorously prove that enforcement using capabilities is correct, and evaluate the file system’s performance.
Modal Types for Mobile Code
, 2008
"... In this dissertation I argue that modal type systems provide an elegant and practical means for controlling local resources in spatially distributed computer programs. A distributed program is one that executes in multiple physical or logical places. It usually does so because those places have loca ..."
Abstract

Cited by 19 (0 self)
 Add to MetaCart
In this dissertation I argue that modal type systems provide an elegant and practical means for controlling local resources in spatially distributed computer programs. A distributed program is one that executes in multiple physical or logical places. It usually does so because those places have local resources that can only be used in those locations. Such resources can include processing power, proximity to data, hardware, or the physical presence of a user. Programmers that write distributed applications therefore need to be able to reason about the places in which their programs will execute. This work provides an elegant and practical way to think about such programs in the form of a type system derived from modal logic. Modal logic allows for reasoning about truth from multiple simultaneous perspectives. These perspectives, called "worlds," are identified with the locations in the distributed program. This enables the programming language to be simultaneously aware of the various hosts involved in a program, their
Linear Logical Algorithms
"... Abstract. Bottomup logic programming can be used to declaratively specify many algorithms in a succinct and natural way, and McAllester and Ganzinger have shown that it is possible to define a cost semantics that enables reasoning about the running time of algorithms written as inference rules. Pre ..."
Abstract

Cited by 12 (4 self)
 Add to MetaCart
Abstract. Bottomup logic programming can be used to declaratively specify many algorithms in a succinct and natural way, and McAllester and Ganzinger have shown that it is possible to define a cost semantics that enables reasoning about the running time of algorithms written as inference rules. Previous work with the programming language Lollimon demonstrates the expressive power of logic programming with linear logic in describing algorithms that have imperative elements or that must repeatedly make mutually exclusive choices. In this paper, we identify a bottomup logic programming language based on linear logic that is amenable to efficient execution and describe a novel cost semantics that can be used for complexity analysis of algorithms expressed in linear logic. Key words: Bottomup logic programming, forward reasoning, linear logic, deductive databases, cost semantics, abstract running time 1
Proof search in an authorization logic
, 2009
"... We consider the problem of proof search in an expressive authorization logic that contains a “says ” modality and an ordering on principals. After a description of the proof system for the logic, we identify two fragments that admit complete goaldirected and saturating proof search strategies. A sm ..."
Abstract

Cited by 9 (5 self)
 Add to MetaCart
We consider the problem of proof search in an expressive authorization logic that contains a “says ” modality and an ordering on principals. After a description of the proof system for the logic, we identify two fragments that admit complete goaldirected and saturating proof search strategies. A smaller fragment is then presented, which supports both goaldirected and saturating search, and has a sound and complete translation to firstorder logic. We conclude with a brief description of our implementation of goaldirected search. This work was supported partially by the iCAST project sponsored by the National Science Council,
A focusing inverse method theorem prover for firstorder linear logic
 In Proceedings of CADE20
, 2005
"... Abstract. We present the theory and implementation of a theorem prover forfirstorder intuitionistic linear logic based on the inverse method. The central prooftheoretic insights underlying the prover concern resource management andfocused derivations, both of which are traditionally understood in ..."
Abstract

Cited by 8 (6 self)
 Add to MetaCart
Abstract. We present the theory and implementation of a theorem prover forfirstorder intuitionistic linear logic based on the inverse method. The central prooftheoretic insights underlying the prover concern resource management andfocused derivations, both of which are traditionally understood in the domain of backward reasoning systems such as logic programming. We illustrate how resource management, focusing, and other intrinsic properties of linear connectives affect the basic forward operations of rule application, contraction, and forwardsubsumption. We also present some preliminary experimental results obtained with our implementation.
Using Constrained Intuitionistic Linear Logic for Hybrid Robotic Planning Problems
"... Synthesis of robot behaviors towards nontrivial goals often requires reasoning about both discrete and continuous aspects of the underlying domain. Existing approaches in building automated tools for such synthesis problems attempt to augment methods from either discrete planning or continuous contr ..."
Abstract

Cited by 8 (1 self)
 Add to MetaCart
Synthesis of robot behaviors towards nontrivial goals often requires reasoning about both discrete and continuous aspects of the underlying domain. Existing approaches in building automated tools for such synthesis problems attempt to augment methods from either discrete planning or continuous control with hybrid elements, but largely fail to ensure a uniform treatment of both aspects of the domain. In this paper, we present a new formalism, Constrained Intuitionistic Linear Logic (CILL), merging continuous constraint solvers with linear logic to yield a single language in which hybrid properties of robotic behaviors can be expressed and reasoned with. Following a gentle introduction to linear logic, we describe the two new connectives of CILL, introduced to interface the constraint domain with the logical fragment of the language. We then illustrate the application of CILL for robotic planning problems within the Balanced Blocks World, a "physically realistic" extension of the (in)famous Blocks World domain. Even though some of the formal proofs necessary to solidify the semantic foundations of the language and an efficient implementation of a theorem prover for the logic are yet to be completed, CILL promises to be a powerful formalism in reasoning within hybrid domains wherein physical properties of a system have to be considered in conjunction with discrete decisions.