Results 1 
2 of
2
Learning Bayesian network structure from massive datasets: The “sparse candidate” algorithm
, 1999
"... Learning Bayesian networks is often cast as an optimization problem, where the computational task is to find a structure that maximizes a statistically motivated score. By and large, existing learning tools address this optimization problem using standard heuristic search techniques. Since the searc ..."
Abstract

Cited by 180 (9 self)
 Add to MetaCart
Learning Bayesian networks is often cast as an optimization problem, where the computational task is to find a structure that maximizes a statistically motivated score. By and large, existing learning tools address this optimization problem using standard heuristic search techniques. Since the search space is extremely large, such search procedures can spend most of the time examining candidates that are extremely unreasonable. This problem becomes critical when we deal with data sets that are large either in the number of instances, or the number of attributes. In this paper, we introduce an algorithm that achieves faster learning by restricting the search space. This iterative algorithm restricts the parents of each variable to belong to a small subset of candidates. We then search for a network that satisfies these constraints. The learned network is then used for selecting better candidates for the next iteration. We evaluate this algorithm both on synthetic and reallife data. Our results show that it is significantly faster than alternative search procedures without loss of quality in the learned structures. 1
Data Analysis with Bayesian Networks: A Bootstrap Approach
, 1999
"... In recent years there has been significant progress in algorithms and methods for inducing Bayesian networks from data. However, in complex data analysis problems, we need to go beyond being satisfied with inducing networks with high scores. We need to provide confidence measures on features o ..."
Abstract

Cited by 49 (7 self)
 Add to MetaCart
In recent years there has been significant progress in algorithms and methods for inducing Bayesian networks from data. However, in complex data analysis problems, we need to go beyond being satisfied with inducing networks with high scores. We need to provide confidence measures on features of these networks: Is the existence of an edge between two nodes warranted? Is the Markov blanket of a given node robust? Can we say something about the ordering of the variables? We should be able to address these questions, even when the amount of data is not enough to induce a high scoring network. In this paper we propose Efron's Bootstrap as a computationally efficient approach for answering these questions. In addition, we propose to use these confidence measures to induce better structures from the data, and to detect the presence of latent variables.