Results 1  10
of
268
Jacobi operators and completely integrable nonlinear lattices
 MATHEMATICAL SURVEYS AND MONOGRAPHS
, 2000
"... ..."
Sum Rules For Jacobi Matrices And Their Applications To Spectral Theory
 Ann. of Math
"... We discuss the proof of and systematic application of Case's sum rules for Jacobi matrices. Of special interest is a linear combination of two of his sum rules which has strictly positive terms. Among our results are a complete classification of the spectral measures of all Jacobi matrices J fo ..."
Abstract

Cited by 127 (39 self)
 Add to MetaCart
(Show Context)
We discuss the proof of and systematic application of Case's sum rules for Jacobi matrices. Of special interest is a linear combination of two of his sum rules which has strictly positive terms. Among our results are a complete classification of the spectral measures of all Jacobi matrices J for which J J0 is HilbertSchmidt, and a proof of Nevai's conjecture that the Szegö condition holds if J J0 is trace class.
Advanced determinant calculus: a complement
 Linear Algebra Appl
"... Abstract. This is a complement to my previous article “Advanced Determinant Calculus ” (Séminaire Lotharingien Combin. 42 (1999), Article B42q, 67 pp.). In the present article, I share with the reader my experience of applying the methods described in the previous article in order to solve a particu ..."
Abstract

Cited by 95 (9 self)
 Add to MetaCart
Abstract. This is a complement to my previous article “Advanced Determinant Calculus ” (Séminaire Lotharingien Combin. 42 (1999), Article B42q, 67 pp.). In the present article, I share with the reader my experience of applying the methods described in the previous article in order to solve a particular problem from number theory (G. Almkvist, J. Petersson and the author, Experiment. Math. 12 (2003), 441– 456). Moreover, I add a list of determinant evaluations which I consider as interesting, which have been found since the appearance of the previous article, or which I failed to mention there, including several conjectures and open problems. 1.
Advanced Determinant Calculus
, 1999
"... The purpose of this article is threefold. First, it provides the reader with a few useful and efficient tools which should enable her/him to evaluate nontrivial determinants for the case such a determinant should appear in her/his research. Second, it lists a number of such determinants that have ..."
Abstract

Cited by 61 (0 self)
 Add to MetaCart
The purpose of this article is threefold. First, it provides the reader with a few useful and efficient tools which should enable her/him to evaluate nontrivial determinants for the case such a determinant should appear in her/his research. Second, it lists a number of such determinants that have been already evaluated, together with explanations which tell in which contexts they have appeared. Third, it points out references where further such determinant evaluations can be found.
Domains for Computation in Mathematics, Physics and Exact Real Arithmetic
 Bulletin of Symbolic Logic
, 1997
"... We present a survey of the recent applications of continuous domains for providing simple computational models for classical spaces in mathematics including the real line, countably based locally compact spaces, complete separable metric spaces, separable Banach spaces and spaces of probability dist ..."
Abstract

Cited by 59 (13 self)
 Add to MetaCart
(Show Context)
We present a survey of the recent applications of continuous domains for providing simple computational models for classical spaces in mathematics including the real line, countably based locally compact spaces, complete separable metric spaces, separable Banach spaces and spaces of probability distributions. It is shown how these models have a logical and effective presentation and how they are used to give a computational framework in several areas in mathematics and physics. These include fractal geometry, where new results on existence and uniqueness of attractors and invariant distributions have been obtained, measure and integration theory, where a generalization of the Riemann theory of integration has been developed, and real arithmetic, where a feasible setting for exact computer arithmetic has been formulated. We give a number of algorithms for computation in the theory of iterated function systems with applications in statistical physics and in period doubling route to chao...
An efficient parallel algorithm for the solution of a tridiagonal linear system of equations
 ACM
, 1973
"... ABSTRACT. Tridiagonal linear systems of equations can be solved on conventional serial machines in a time proportional to N, where N is the number of equations. The conventional algorithms do not lend themselves directly to parallel computation computers of the ILLIAC IV class, in the sense that the ..."
Abstract

Cited by 58 (0 self)
 Add to MetaCart
(Show Context)
ABSTRACT. Tridiagonal linear systems of equations can be solved on conventional serial machines in a time proportional to N, where N is the number of equations. The conventional algorithms do not lend themselves directly to parallel computation computers of the ILLIAC IV class, in the sense that they appear to be inherently serial. An efficient parallel algorithm is presented in which computation time grows as log2 N. The algorithm is based on recursive doubling solutions of linear recurrence r lations, and can be used to solve recurrence relations of all orders.
New infinite families of exact sums of squares formulas, Jacobi elliptic functions, and Ramanujan’s tau function
, 1996
"... Dedicated to the memory of GianCarlo Rota who encouraged me to write this paper in the present style Abstract. In this paper we derive many infinite families of explicit exact formulas involving either squares or triangular numbers, two of which generalize Jacobi’s 4 and 8 squares identities to 4n ..."
Abstract

Cited by 47 (1 self)
 Add to MetaCart
(Show Context)
Dedicated to the memory of GianCarlo Rota who encouraged me to write this paper in the present style Abstract. In this paper we derive many infinite families of explicit exact formulas involving either squares or triangular numbers, two of which generalize Jacobi’s 4 and 8 squares identities to 4n 2 or 4n(n + 1) squares, respectively, without using cusp forms. In fact, we similarly generalize to infinite families all of Jacobi’s explicitly stated degree 2, 4, 6, 8 Lambert series expansions of classical theta functions. In addition, we extend Jacobi’s special analysis of 2 squares, 2 triangles, 6 squares, 6 triangles to 12 squares, 12 triangles, 20 squares, 20 triangles, respectively. Our 24 squares identity leads to a different formula for Ramanujan’s tau function τ(n), when n is odd. These results, depending on new expansions for powers of various products of classical theta functions, arise in the setting of Jacobi elliptic functions, associated continued fractions, regular Cfractions, Hankel or Turánian determinants, Fourier series, Lambert series, inclusion/exclusion, Laplace expansion formula for determinants, and Schur functions. The Schur function form of these infinite families of identities are analogous to the ηfunction identities of Macdonald. Moreover, the powers 4n(n + 1), 2n 2 + n, 2n 2 − n that appear in Macdonald’s work also arise at appropriate places in our analysis. A special case of our general methods yields a proof of the two Kac–Wakimoto conjectured identities involving representing
On the classification of rational tangles
, 2003
"... In this paper we give two new combinatorial proofs of the classification of rational tangles using the calculus of continued fractions. One proof uses the classification of alternating knots. The other proof uses colorings of tangles. We also obtain an elementary proof that alternating rational tang ..."
Abstract

Cited by 38 (9 self)
 Add to MetaCart
In this paper we give two new combinatorial proofs of the classification of rational tangles using the calculus of continued fractions. One proof uses the classification of alternating knots. The other proof uses colorings of tangles. We also obtain an elementary proof that alternating rational tangles have minimal number of crossings. Rational tangles form a basis for the classification of knots and are of fundamental importance in the study of DNA recombination.
Quenched, annealed and functional large deviations for onedimensional random walk in random environment
 Prob. Th. Rel. Fields
, 2000
"... ..."