Results 1  10
of
130
operators and completely integrable nonlinear lattices
 Mathematical Surveys and Monographs
, 2000
"... to post this online edition! This version is for personal use only! If you like this book and want to support the idea of online versions, please consider buying this book: ..."
Abstract

Cited by 149 (43 self)
 Add to MetaCart
to post this online edition! This version is for personal use only! If you like this book and want to support the idea of online versions, please consider buying this book:
Sum Rules For Jacobi Matrices And Their Applications To Spectral Theory
 Ann. of Math
"... We discuss the proof of and systematic application of Case's sum rules for Jacobi matrices. Of special interest is a linear combination of two of his sum rules which has strictly positive terms. Among our results are a complete classification of the spectral measures of all Jacobi matrices J for whi ..."
Abstract

Cited by 99 (38 self)
 Add to MetaCart
We discuss the proof of and systematic application of Case's sum rules for Jacobi matrices. Of special interest is a linear combination of two of his sum rules which has strictly positive terms. Among our results are a complete classification of the spectral measures of all Jacobi matrices J for which J J0 is HilbertSchmidt, and a proof of Nevai's conjecture that the Szegö condition holds if J J0 is trace class.
Advanced determinant calculus: a complement
 Linear Algebra Appl
"... Abstract. This is a complement to my previous article “Advanced Determinant Calculus ” (Séminaire Lotharingien Combin. 42 (1999), Article B42q, 67 pp.). In the present article, I share with the reader my experience of applying the methods described in the previous article in order to solve a particu ..."
Abstract

Cited by 49 (6 self)
 Add to MetaCart
Abstract. This is a complement to my previous article “Advanced Determinant Calculus ” (Séminaire Lotharingien Combin. 42 (1999), Article B42q, 67 pp.). In the present article, I share with the reader my experience of applying the methods described in the previous article in order to solve a particular problem from number theory (G. Almkvist, J. Petersson and the author, Experiment. Math. 12 (2003), 441– 456). Moreover, I add a list of determinant evaluations which I consider as interesting, which have been found since the appearance of the previous article, or which I failed to mention there, including several conjectures and open problems. 1.
Domains for Computation in Mathematics, Physics and Exact Real Arithmetic
 Bulletin of Symbolic Logic
, 1997
"... We present a survey of the recent applications of continuous domains for providing simple computational models for classical spaces in mathematics including the real line, countably based locally compact spaces, complete separable metric spaces, separable Banach spaces and spaces of probability dist ..."
Abstract

Cited by 48 (10 self)
 Add to MetaCart
We present a survey of the recent applications of continuous domains for providing simple computational models for classical spaces in mathematics including the real line, countably based locally compact spaces, complete separable metric spaces, separable Banach spaces and spaces of probability distributions. It is shown how these models have a logical and effective presentation and how they are used to give a computational framework in several areas in mathematics and physics. These include fractal geometry, where new results on existence and uniqueness of attractors and invariant distributions have been obtained, measure and integration theory, where a generalization of the Riemann theory of integration has been developed, and real arithmetic, where a feasible setting for exact computer arithmetic has been formulated. We give a number of algorithms for computation in the theory of iterated function systems with applications in statistical physics and in period doubling route to chao...
Advanced Determinant Calculus
, 1999
"... The purpose of this article is threefold. First, it provides the reader with a few useful and efficient tools which should enable her/him to evaluate nontrivial determinants for the case such a determinant should appear in her/his research. Second, it lists a number of such determinants that have ..."
Abstract

Cited by 37 (0 self)
 Add to MetaCart
The purpose of this article is threefold. First, it provides the reader with a few useful and efficient tools which should enable her/him to evaluate nontrivial determinants for the case such a determinant should appear in her/his research. Second, it lists a number of such determinants that have been already evaluated, together with explanations which tell in which contexts they have appeared. Third, it points out references where further such determinant evaluations can be found.
New infinite families of exact sums of squares formulas, Jacobi elliptic functions, and Ramanujan’s tau function
, 1996
"... Dedicated to the memory of GianCarlo Rota who encouraged me to write this paper in the present style Abstract. In this paper we derive many infinite families of explicit exact formulas involving either squares or triangular numbers, two of which generalize Jacobi’s 4 and 8 squares identities to 4n ..."
Abstract

Cited by 35 (1 self)
 Add to MetaCart
Dedicated to the memory of GianCarlo Rota who encouraged me to write this paper in the present style Abstract. In this paper we derive many infinite families of explicit exact formulas involving either squares or triangular numbers, two of which generalize Jacobi’s 4 and 8 squares identities to 4n 2 or 4n(n + 1) squares, respectively, without using cusp forms. In fact, we similarly generalize to infinite families all of Jacobi’s explicitly stated degree 2, 4, 6, 8 Lambert series expansions of classical theta functions. In addition, we extend Jacobi’s special analysis of 2 squares, 2 triangles, 6 squares, 6 triangles to 12 squares, 12 triangles, 20 squares, 20 triangles, respectively. Our 24 squares identity leads to a different formula for Ramanujan’s tau function τ(n), when n is odd. These results, depending on new expansions for powers of various products of classical theta functions, arise in the setting of Jacobi elliptic functions, associated continued fractions, regular Cfractions, Hankel or Turánian determinants, Fourier series, Lambert series, inclusion/exclusion, Laplace expansion formula for determinants, and Schur functions. The Schur function form of these infinite families of identities are analogous to the ηfunction identities of Macdonald. Moreover, the powers 4n(n + 1), 2n 2 + n, 2n 2 − n that appear in Macdonald’s work also arise at appropriate places in our analysis. A special case of our general methods yields a proof of the two Kac–Wakimoto conjectured identities involving representing
Semantics of Exact Real Arithmetic
, 1997
"... In this paper, we incorporate a representation of the nonnegative extended real numbers based on the composition of linear fractional transformations with nonnegative integer coefficients into the Programming Language for Computable Functions (PCF) with products. We present two models for the exten ..."
Abstract

Cited by 29 (8 self)
 Add to MetaCart
In this paper, we incorporate a representation of the nonnegative extended real numbers based on the composition of linear fractional transformations with nonnegative integer coefficients into the Programming Language for Computable Functions (PCF) with products. We present two models for the extended language and show that they are computationally adequate with respect to the operational semantics.
The number of rhombus tilings of a symmetric hexagon which contain a fixed rhombus on the symmetry axis
"... Abstract. We compute the number of rhombus tilings of a hexagon with sides N, M, N, N, M, N, which contain a fixed rhombus on the symmetry axis that cuts through the sides of length M. 1. ..."
Abstract

Cited by 23 (7 self)
 Add to MetaCart
Abstract. We compute the number of rhombus tilings of a hexagon with sides N, M, N, N, M, N, which contain a fixed rhombus on the symmetry axis that cuts through the sides of length M. 1.
Quenched, annealed and functional large deviations for onedimensional random walk in random environment
 Prob. Th. Rel. Fields
, 2000
"... ..."