Results 1 
8 of
8
Physical versus Computational Complementarity I
, 1996
"... The dichotomy between endophysical/intrinsic and exophysical/extrinsic perception concerns the question of how a model  mathematical, logical, computational  universe is perceived from inside or from outside, [71, 65, 66, 59, 60, 68, 67]. This distinction goes back in time at least to Archimedes, ..."
Abstract

Cited by 20 (19 self)
 Add to MetaCart
The dichotomy between endophysical/intrinsic and exophysical/extrinsic perception concerns the question of how a model  mathematical, logical, computational  universe is perceived from inside or from outside, [71, 65, 66, 59, 60, 68, 67]. This distinction goes back in time at least to Archimedes, reported to have asked for a point outside the world from which one could move the earth. An exophysical perception is realized when the system is laid out and the experimenter peeps at the relevant features without changing the system. The information flows on a oneway road: from the system to the experimenter. An endophysical perception can be realized when the experimenter is part of the system under observation. In such a case one has a twoway informational flow; measurements and entities measured are interchangeable and any attempt to distinguish between them ends up as a convention. The general conception dominating the sciences is that the physical universe is perceivable ...
Computational universes
 Chaos, Solitons & Fractals
, 2006
"... Suspicions that the world might be some sort of a machine or algorithm existing “in the mind ” of some symbolic number cruncher have lingered from antiquity. Although popular at times, the most radical forms of this idea never reached mainstream. Modern developments in physics and computer science h ..."
Abstract

Cited by 9 (5 self)
 Add to MetaCart
Suspicions that the world might be some sort of a machine or algorithm existing “in the mind ” of some symbolic number cruncher have lingered from antiquity. Although popular at times, the most radical forms of this idea never reached mainstream. Modern developments in physics and computer science have lent support to the thesis, but empirical evidence is needed before it can begin to replace our contemporary world view.
Set Theory and Physics
 FOUNDATIONS OF PHYSICS, VOL. 25, NO. 11
, 1995
"... Inasmuch as physical theories are formalizable, set theory provides a framework for theoretical physics. Four speculations about the relevance of set theoretical modeling for physics are presented: the role of transcendental set theory (i) hr chaos theory, (ii) for paradoxical decompositions of soli ..."
Abstract

Cited by 8 (7 self)
 Add to MetaCart
Inasmuch as physical theories are formalizable, set theory provides a framework for theoretical physics. Four speculations about the relevance of set theoretical modeling for physics are presented: the role of transcendental set theory (i) hr chaos theory, (ii) for paradoxical decompositions of solid threedimensional objects, (iii) in the theory of effective computability (ChurchTurhrg thesis) related to the possible "solution of supertasks," and (iv) for weak solutions. Several approaches to set theory and their advantages and disadvatages for" physical applications are discussed: Cantorian "naive" (i.e., nonaxiomatic) set theory, contructivism, and operationalism, hr the arrthor's ophrion, an attitude of "suspended attention" (a term borrowed from psychoanalysis) seems most promising for progress. Physical and set theoretical entities must be operationalized wherever possible. At the same thne, physicists shouM be open to "bizarre" or "mindboggling" new formalisms, which treed not be operationalizable or testable at the thne of their " creation, but which may successfully lead to novel fields of phenomenology and technology.
Conventions in Relativity Theory and Quantum Mechanics
, 2002
"... ons. They lie at the very foundations of our world conceptions. Conventions serve as a sort of "scaffolding" from which we construct our scientific worldview. Yet, they are so simple and almost selfevident that they are hardly mentioned and go unreflected. To the author, this unreflectedness and ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
ons. They lie at the very foundations of our world conceptions. Conventions serve as a sort of "scaffolding" from which we construct our scientific worldview. Yet, they are so simple and almost selfevident that they are hardly mentioned and go unreflected. To the author, this unreflectedness and unawareness of conventionality appears to be the biggest problem related to conventions, especially if they are mistakenly considered as physical "facts" which are empirically testable. This confusion between assumption and observational, operational fact seems to be one of the biggest impediments for progressive research programs, in particular if they suggest postulates which are based on conventions different from the existing ones. In what follows we shall mainly review and discuss conventions in the two dominating theories of the 20th century: quantum mechanics and relativity theory. 2. CONVENTIONALITY OF THE CONSTANCY OF THE CHARACTERISTIC SPEED Sup
On the Brightness of the Thomson Lamp. A Prolegomenon to Quantum Recursion Theory
, 2009
"... Some physical aspects related to the limit operations of the Thomson lamp are discussed. Regardless of the formally unbounded and even infinite number of “steps” involved, the physical limit has an operational meaning in agreement with the Abel sums of infinite series. The formal analogies to accele ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
Some physical aspects related to the limit operations of the Thomson lamp are discussed. Regardless of the formally unbounded and even infinite number of “steps” involved, the physical limit has an operational meaning in agreement with the Abel sums of infinite series. The formal analogies to accelerated (hyper) computers and the recursion theoretic diagonal methods are discussed. As quantum information is not bound by the mutually exclusive states of classical bits, it allows a consistent representation of fixed point states of the diagonal operator. In an effort to reconstruct the selfcontradictory feature of diagonalization, a generalized diagonal method allowing no quantum fixed points is proposed.
The diagonalization method in quantum recursion theory
, 2009
"... As quantum parallelism allows the effective corepresentation of classical mutually exclusive states, the diagonalization method of classical recursion theory has to be modified. Quantum diagonalization involves unitary operators whose eigenvalues are different from one. ..."
Abstract
 Add to MetaCart
As quantum parallelism allows the effective corepresentation of classical mutually exclusive states, the diagonalization method of classical recursion theory has to be modified. Quantum diagonalization involves unitary operators whose eigenvalues are different from one.