Results 1 
8 of
8
Integers, without large prime factors, in arithmetic progressions, II
"... : We show that, for any fixed " ? 0, there are asymptotically the same number of integers up to x, that are composed only of primes y, in each arithmetic progression (mod q), provided that y q 1+" and log x=log q ! 1 as y ! 1: this improves on previous estimates. y An Alfred P. Sloan Research Fe ..."
Abstract

Cited by 8 (1 self)
 Add to MetaCart
: We show that, for any fixed " ? 0, there are asymptotically the same number of integers up to x, that are composed only of primes y, in each arithmetic progression (mod q), provided that y q 1+" and log x=log q ! 1 as y ! 1: this improves on previous estimates. y An Alfred P. Sloan Research Fellow. Supported, in part, by the National Science Foundation Integers, without large prime factors, in arithmetic progressions, II Andrew Granville 1. Introduction. The study of the distribution of integers with only small prime factors arises naturally in many areas of number theory; for example, in the study of large gaps between prime numbers, of values of character sums, of Fermat's Last Theorem, of the multiplicative group of integers modulo m, of Sunit equations, of Waring's problem, and of primality testing and factoring algorithms. For over sixty years this subject has received quite a lot of attention from analytic number theorists and we have recently begun to attain a very pre...
On elementary proofs of the Prime Number Theorem for arithmetic progressions, without characters.
, 1993
"... : We consider what one can prove about the distribution of prime numbers in arithmetic progressions, using only Selberg's formula. In particular, for any given positive integer q, we prove that either the Prime Number Theorem for arithmetic progressions, modulo q, does hold, or that there exists a s ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
: We consider what one can prove about the distribution of prime numbers in arithmetic progressions, using only Selberg's formula. In particular, for any given positive integer q, we prove that either the Prime Number Theorem for arithmetic progressions, modulo q, does hold, or that there exists a subgroup H of the reduced residue system, modulo q, which contains the squares, such that `(x; q; a) ¸ 2x=OE(q) for each a 62 H and `(x; q; a) = o(x=OE(q)), otherwise. From here, we deduce that if the second case holds at all, then it holds only for the multiples of some fixed integer q 0 ? 1. Actually, even if the Prime Number Theorem for arithmetic progressions, modulo q, does hold, these methods allow us to deduce the behaviour of a possible `Siegel zero' from Selberg's formula. We also propose a new method for determining explicit upper and lower bounds on `(x; q; a), which uses only elementary number theoretic computations. 1. Introduction. Define `(x) = P px log p, where p only denot...
The GelfondSchnirelman Method In Prime Number Theory
 Canad. J. Math
"... The original GelfondSchnirelman method, proposed in 1936, uses polynomials with integer coe#cients and small norms on [0, 1] to give a Chebyshevtype lower bound in prime number theory. We study a generalization of this method for polynomials in many variables. Our main result is a lower bound for t ..."
Abstract

Cited by 4 (4 self)
 Add to MetaCart
The original GelfondSchnirelman method, proposed in 1936, uses polynomials with integer coe#cients and small norms on [0, 1] to give a Chebyshevtype lower bound in prime number theory. We study a generalization of this method for polynomials in many variables. Our main result is a lower bound for the integral of Chebyshev's #function, expressed in terms of the weighted capacity. This extends previous work of Nair and Chudnovsky, and connects the subject to the potential theory with external fields generated by polynomialtype weights. We also solve the corresponding potential theoretic problem, by finding the extremal measure and its support. 1. Lower bounds for arithmetic functions Let #(x) be the number of primes not exceeding x. The celebrated Prime Number Theorem (PNT), suggested by Legendre and Gauss, states that ##.
Different Approaches to the Distribution of Primes
 MILAN JOURNAL OF MATHEMATICS
, 2009
"... In this lecture celebrating the 150th anniversary of the seminal paper of Riemann, we discuss various approaches to interesting questions concerning the distribution of primes, including several that do not involve the Riemann zetafunction. ..."
Abstract
 Add to MetaCart
In this lecture celebrating the 150th anniversary of the seminal paper of Riemann, we discuss various approaches to interesting questions concerning the distribution of primes, including several that do not involve the Riemann zetafunction.
NUCLEI, PRIMES AND THE RANDOM MATRIX CONNECTION
, 2009
"... In this article, we discuss the remarkable connection between two very different fields, number theory and nuclear physics. We describe the essential aspects of these fields, the quantities studied, and how insights in one have been fruitfully applied in the other. The exciting branch of modern mat ..."
Abstract
 Add to MetaCart
In this article, we discuss the remarkable connection between two very different fields, number theory and nuclear physics. We describe the essential aspects of these fields, the quantities studied, and how insights in one have been fruitfully applied in the other. The exciting branch of modern mathematics – random matrix theory – provides the connection between the two fields. We assume no detailed knowledge of number theory, nuclear physics, or random matrix theory; all that is required is some familiarity with linear algebra and probability theory, as well as some results from complex analysis. Our goal is to provide the inquisitive reader with a sound overview of the subjects, placing them in their historical context in a way that is not traditionally given in the popular and
CONTENTS
, 2006
"... ABSTRACT. We analyse the Dirichlet convolution ring of arithmetic number theoretic functions. It turns out to fail to be a Hopf algebra on the diagonal, due to the lack of complete multiplicativity of the product and coproduct. A related Hopf algebra can be established, which however overcounts the ..."
Abstract
 Add to MetaCart
ABSTRACT. We analyse the Dirichlet convolution ring of arithmetic number theoretic functions. It turns out to fail to be a Hopf algebra on the diagonal, due to the lack of complete multiplicativity of the product and coproduct. A related Hopf algebra can be established, which however overcounts the diagonal. We argue that the mechanism of renormalization in quantum field theory is modelled after the same principle. Singularities hence arise as a (now continuously indexed) overcounting on the diagonals. Renormalization is given by the map from the auxiliary Hopf algebra to the weaker multiplicative structure, called Hopf gebra, rescaling the diagonals.
Theorem
"... A socalled Renormalization Group (RG) analysis is performed in order to shed some light on why the density of prime numbers in N ∗ decreases like the single power of the inverse neperian logarithm. ..."
Abstract
 Add to MetaCart
A socalled Renormalization Group (RG) analysis is performed in order to shed some light on why the density of prime numbers in N ∗ decreases like the single power of the inverse neperian logarithm.
An Epic Drama: The Development of the Prime Number Theorem
, 2010
"... The prime number theorem, describing the aymptotic density of the prime numbers, has often been touted as the most surprising result in mathematics. The statement and development of the theorem by Legendre, Gauss and others and its eventual proof by Hadamard and de al ValléePoussin span the whole ..."
Abstract
 Add to MetaCart
The prime number theorem, describing the aymptotic density of the prime numbers, has often been touted as the most surprising result in mathematics. The statement and development of the theorem by Legendre, Gauss and others and its eventual proof by Hadamard and de al ValléePoussin span the whole nineteenth century and encompass the growth of a brand new field in analytic number theory. As an outgrowth of the techniques of the proof is the Riemann hypothesis which today is perhaps the outstanding open problem in mathematics. These ideas and occurences certainly constitute an epic drama within the history of mathematics and one that is not as well known among the general mathematical community as it should be. In the present paper we trace out the paper, the development of the proof and a raft of other ideas, results and concepts that come from the prime number theorem.