Results 1  10
of
11
Integers, without large prime factors, in arithmetic progressions, II
"... : We show that, for any fixed " ? 0, there are asymptotically the same number of integers up to x, that are composed only of primes y, in each arithmetic progression (mod q), provided that y q 1+" and log x=log q ! 1 as y ! 1: this improves on previous estimates. y An Alfred P. Sloan R ..."
Abstract

Cited by 11 (1 self)
 Add to MetaCart
: We show that, for any fixed " ? 0, there are asymptotically the same number of integers up to x, that are composed only of primes y, in each arithmetic progression (mod q), provided that y q 1+" and log x=log q ! 1 as y ! 1: this improves on previous estimates. y An Alfred P. Sloan Research Fellow. Supported, in part, by the National Science Foundation Integers, without large prime factors, in arithmetic progressions, II Andrew Granville 1. Introduction. The study of the distribution of integers with only small prime factors arises naturally in many areas of number theory; for example, in the study of large gaps between prime numbers, of values of character sums, of Fermat's Last Theorem, of the multiplicative group of integers modulo m, of Sunit equations, of Waring's problem, and of primality testing and factoring algorithms. For over sixty years this subject has received quite a lot of attention from analytic number theorists and we have recently begun to attain a very pre...
The Gelfond–Schnirelman method in prime number theory
 Canad. J. Math
, 2005
"... Abstract. The original Gelfond–Schnirelman method, proposed in 1936, uses polynomials with integer coefficients and small norms on [0, 1] to give a Chebyshevtype lower bound in prime number theory. We study a generalization of this method for polynomials in many variables. Our main result is a lowe ..."
Abstract

Cited by 5 (5 self)
 Add to MetaCart
Abstract. The original Gelfond–Schnirelman method, proposed in 1936, uses polynomials with integer coefficients and small norms on [0, 1] to give a Chebyshevtype lower bound in prime number theory. We study a generalization of this method for polynomials in many variables. Our main result is a lower bound for the integral of Chebyshev’s ψfunction, expressed in terms of the weighted capacity. This extends previous work of Nair and Chudnovsky, and connects the subject to the potential theory with external fields generated by polynomialtype weights. We also solve the corresponding potential theoretic problem, by finding the extremal measure and its support. 1 Lower Bounds for Arithmetic Functions Let π(x) be the number of primes not exceeding x. The celebrated Prime Number Theorem (PNT), suggested by Legendre and Gauss, states that (1.1) π(x) ∼ x log x as x → ∞. We include a very brief sketch of its history, referring for details to many excellent books and surveys available on this subject (see, e.g., [8, 10, 17, 29]). Chebyshev [6] made the first important step towards the PNT in 1852, by proving the bounds (1.2) 0.921 x log x
On elementary proofs of the Prime Number Theorem for arithmetic progressions, without characters.
, 1993
"... : We consider what one can prove about the distribution of prime numbers in arithmetic progressions, using only Selberg's formula. In particular, for any given positive integer q, we prove that either the Prime Number Theorem for arithmetic progressions, modulo q, does hold, or that there exist ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
: We consider what one can prove about the distribution of prime numbers in arithmetic progressions, using only Selberg's formula. In particular, for any given positive integer q, we prove that either the Prime Number Theorem for arithmetic progressions, modulo q, does hold, or that there exists a subgroup H of the reduced residue system, modulo q, which contains the squares, such that `(x; q; a) ¸ 2x=OE(q) for each a 62 H and `(x; q; a) = o(x=OE(q)), otherwise. From here, we deduce that if the second case holds at all, then it holds only for the multiples of some fixed integer q 0 ? 1. Actually, even if the Prime Number Theorem for arithmetic progressions, modulo q, does hold, these methods allow us to deduce the behaviour of a possible `Siegel zero' from Selberg's formula. We also propose a new method for determining explicit upper and lower bounds on `(x; q; a), which uses only elementary number theoretic computations. 1. Introduction. Define `(x) = P px log p, where p only denot...
DISTRIBUTION OF PRIMES AND A WEIGHTED ENERGY PROBLEM
"... Abstract. We discuss a recent development connecting the asymptotic distribution of prime numbers with weighted potential theory. These ideas originated with the GelfondSchnirelman method (circa 1936), which used polynomials with integer coefficients and small sup norms on ¢ £¥¤§¦© ¨ to give a Cheb ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
Abstract. We discuss a recent development connecting the asymptotic distribution of prime numbers with weighted potential theory. These ideas originated with the GelfondSchnirelman method (circa 1936), which used polynomials with integer coefficients and small sup norms on ¢ £¥¤§¦© ¨ to give a Chebyshevtype lower bound in prime number theory. A generalization of this method for polynomials in many variables was later studied by Nair and Chudnovsky, who produced tight bounds for the distribution of primes. Our main result is a lower bound for the integral of Chebyshev’s �function, expressed in terms of the weighted capacity for polynomialtype weights. We also solve the corresponding potential theoretic problem, by finding the extremal measure and its support. This new connection leads to some interesting open problems on weighted capacity.
CONTENTS
, 2006
"... ABSTRACT. We analyse the Dirichlet convolution ring of arithmetic number theoretic functions. It turns out to fail to be a Hopf algebra on the diagonal, due to the lack of complete multiplicativity of the product and coproduct. A related Hopf algebra can be established, which however overcounts the ..."
Abstract
 Add to MetaCart
ABSTRACT. We analyse the Dirichlet convolution ring of arithmetic number theoretic functions. It turns out to fail to be a Hopf algebra on the diagonal, due to the lack of complete multiplicativity of the product and coproduct. A related Hopf algebra can be established, which however overcounts the diagonal. We argue that the mechanism of renormalization in quantum field theory is modelled after the same principle. Singularities hence arise as a (now continuously indexed) overcounting on the diagonals. Renormalization is given by the map from the auxiliary Hopf algebra to the weaker multiplicative structure, called Hopf gebra, rescaling the diagonals.
Theorem
"... A socalled Renormalization Group (RG) analysis is performed in order to shed some light on why the density of prime numbers in N ∗ decreases like the single power of the inverse neperian logarithm. ..."
Abstract
 Add to MetaCart
A socalled Renormalization Group (RG) analysis is performed in order to shed some light on why the density of prime numbers in N ∗ decreases like the single power of the inverse neperian logarithm.
NUCLEI, PRIMES AND THE RANDOM MATRIX CONNECTION
, 2009
"... In this article, we discuss the remarkable connection between two very different fields, number theory and nuclear physics. We describe the essential aspects of these fields, the quantities studied, and how insights in one have been fruitfully applied in the other. The exciting branch of modern mat ..."
Abstract
 Add to MetaCart
In this article, we discuss the remarkable connection between two very different fields, number theory and nuclear physics. We describe the essential aspects of these fields, the quantities studied, and how insights in one have been fruitfully applied in the other. The exciting branch of modern mathematics – random matrix theory – provides the connection between the two fields. We assume no detailed knowledge of number theory, nuclear physics, or random matrix theory; all that is required is some familiarity with linear algebra and probability theory, as well as some results from complex analysis. Our goal is to provide the inquisitive reader with a sound overview of the subjects, placing them in their historical context in a way that is not traditionally given in the popular and
Different Approaches to the Distribution of Primes
 MILAN JOURNAL OF MATHEMATICS
, 2009
"... In this lecture celebrating the 150th anniversary of the seminal paper of Riemann, we discuss various approaches to interesting questions concerning the distribution of primes, including several that do not involve the Riemann zetafunction. ..."
Abstract
 Add to MetaCart
In this lecture celebrating the 150th anniversary of the seminal paper of Riemann, we discuss various approaches to interesting questions concerning the distribution of primes, including several that do not involve the Riemann zetafunction.
RENORMALIZATION: A NUMBER THEORETICAL MODEL
, 2006
"... ABSTRACT. We analyse the Dirichlet convolution ring of arithmetic number theoretic functions. It turns out to fail to be a Hopf algebra on the diagonal, due to the lack of complete multiplicativity of the product and coproduct. A related Hopf algebra can be established, which however overcounts the ..."
Abstract
 Add to MetaCart
ABSTRACT. We analyse the Dirichlet convolution ring of arithmetic number theoretic functions. It turns out to fail to be a Hopf algebra on the diagonal, due to the lack of complete multiplicativity of the product and coproduct. A related Hopf algebra can be established, which however overcounts the diagonal. We argue that the mechanism of renormalization in quantum field theory is modelled after the same principle. Singularities hence arise as a (now continuously indexed) overcounting on the diagonals. Renormalization is given by the map from the auxiliary Hopf algebra to the weaker multiplicative structure, called Hopf gebra, rescaling the diagonals.
On the Number of Prime Numbers less than a Given Quantity
, 2000
"... this paper we are interested in the distribution of prime numbers in M, where M # N is a given infinite set. This is a fundamental question, and it has been analyzed by some of the greatest mathematicians of all time, such as Euclid, Euler, Gauss, Dirichlet, Chebyshev, Riemann, Landau, Wiener, Ha ..."
Abstract
 Add to MetaCart
this paper we are interested in the distribution of prime numbers in M, where M # N is a given infinite set. This is a fundamental question, and it has been analyzed by some of the greatest mathematicians of all time, such as Euclid, Euler, Gauss, Dirichlet, Chebyshev, Riemann, Landau, Wiener, Hardy, Erdos, and many more. Their e#orts gave birth to many new important mathematical ideas, e.g. analytic number theory, Riemann zeta function, and tauberian theorems. To make the problem concrete, let p n denote the nth prime in M, #(x) be the number of the primes in M not exceeding x, and # n = p n+1 p n . Here are some general "distribution" questions: (a) Are there infinitely many primes in M (b) Is there a useful formula for p n or #(x) (c) Is there an asymptotic formula for p n (as n ##) or #(x) (as x ##) (d) How big the gap between two successive primes can be (lim sup n## # n ) (e) What can be said about lim inf n## # n (f) What is the probability for a randomly picked number to be a prime In the simplest case M # N, (a) has a positive answer and it was proved by Euclid using one of the first examples of "prove by contradiction" technique. However, if M ## N this can be a very di#cult question. A variety of formulas for p n and #(n) exist, but all of them are contrived to such an extent that they are of little practical value. For example, if [x] 1 denotes the integer part of x, i.e. the unique integer such that x  1 < [x] # x, then for n # 3 (see [15]): #(n) = 1 + n # j=3 # (j  2)!  j # (j  2)! j ## and p n = 1 + 2 n # j=1 f(n, #(j)), where f(x, y) = (1 + (x  y)/x  y)/2 if x #= y and 0 otherwise. Question (e) still remains open, although the hypothesis that there are infinitely many twin primes, i.e. that l...