Results 1 
6 of
6
Cantor's Grundlagen and the Paradoxes of Set Theory
"... This paper was written in honor of Charles Parsons, from whom I have profited for many years in my study of the philosophy of mathematics and expect to continue profiting for many more years to come. In particular, listening to his lecture on "Sets and classes", published in [Parsons, 1974], motiva ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
This paper was written in honor of Charles Parsons, from whom I have profited for many years in my study of the philosophy of mathematics and expect to continue profiting for many more years to come. In particular, listening to his lecture on "Sets and classes", published in [Parsons, 1974], motivated my first attempts to understand proper classes and the realm of transfinite numbers. I read a version of the paper at the APA Central Division meeting in Chicago in May, 1998. I thank Howard Stein, who provided valuable criticisms of an earlier draft, ranging from the correction of spelling mistakes, through important historical remarks, to the correction of a mathematical mistake, and Patricia Blanchette, who commented on the paper at the APA meeting and raised two challenging points which have led to improvements in this final version
Category Theory and Structuralism
, 2009
"... The term structuralism occurred in several branches of the humanities and the sciences in the period 1929 – 1970: in Linguistics (Ferdinand de Saussure, Roman Jakobson), Anthropology (Claude LéviStrauss), Developmental psychology (Jean Piaget), Literature (Workshop for potential literature, Raymond ..."
Abstract
 Add to MetaCart
The term structuralism occurred in several branches of the humanities and the sciences in the period 1929 – 1970: in Linguistics (Ferdinand de Saussure, Roman Jakobson), Anthropology (Claude LéviStrauss), Developmental psychology (Jean Piaget), Literature (Workshop for potential literature, Raymond Queneau) and in Mathematics (Nicolas Bourbaki). To the layman the structuralist movement in mathematics was perhaps most visible the form of New Math, which was strongly influenced by the Bourbaki school. It has been argued in (Aubin 1997) that there were cultural connections between these movements. (See also A. Aczel 2007.) Some of these interactions may be regarded as rather superficial. The epistemologist Piaget however was very much influenced by Bourbaki, and seems to have suggested that those patterns of thought used to explain cognitive development were closely related to the mathematical “mother structures ” found by Bourbaki. On a very general level, structuralism refers to a mode of thinking involving abstraction from specifics and systematic identification and naming of common patterns. It is the relation of objects under study to each other that is of importance rather than their specific appearance, or “nature”. In mathematics, Richard Dedekind may be said to be the first structuralist. He described the positive integers (1, 2, 3,...) as positions in an infinite progression of elements (a socalled simply infinite system) 1 � � 2
In Defense of the Ideal 2nd DRAFT
"... This paper lies at the edge of the topic of the workshop. We can write down a Π1 1 axiom whose models are precisely the ∈structures 〈Rα, ∈ ∩R2 α〉 where α> 0 and Rα is the collection of all (pure) sets of rank < α. From this, one can consider the introduction of new axioms concerning the size of α. ..."
Abstract
 Add to MetaCart
This paper lies at the edge of the topic of the workshop. We can write down a Π1 1 axiom whose models are precisely the ∈structures 〈Rα, ∈ ∩R2 α〉 where α> 0 and Rα is the collection of all (pure) sets of rank < α. From this, one can consider the introduction of new axioms concerning the size of α. The question of the grounds for doing so is perhaps the central question of the workshop. But I want to discuss another question which, as I said, arises at the periphery: How do we know that there are structures 〈Rα, ∈ ∩R2 α〉? How do we know that there exist such things as sets and how do we know that, given such things, the axioms we write down are true of them? These seem very primitive questions, but the skepticism implicit in them has deep (and ancient) roots. In particular, they are questions about ideal objects in general, and not just about the actual infinite. I want to explain why I think the questions (as intended) are empty and the skepticism unfounded. 1 I will be expanding the argument of the first part of my paper “Proof and truth: the Platonism of mathematics”[1986a]. 2 The argument in question
QUANTUM MECHANICS AS A SPACETIME THEORY
, 2005
"... Abstract. We show how quantum mechanics can be understood as a spacetime theory provided that its spatial continuum is modelled by a variable real number (qrumber) continuum. Such a continuum can be constructed using only standard Hilbert space entities. The geometry of atoms and subatomic objects ..."
Abstract
 Add to MetaCart
Abstract. We show how quantum mechanics can be understood as a spacetime theory provided that its spatial continuum is modelled by a variable real number (qrumber) continuum. Such a continuum can be constructed using only standard Hilbert space entities. The geometry of atoms and subatomic objects differs from that of classical objects. The systems that are nonlocal when measured in the classical spacetime continuum may be localized in the quantum continuum. We compare this new description of spacetime with the Bohmian picture of quantum mechanics. 1. What is quantum spacetime? Both modern mathematics and modern physics underwent serious foundational crises during the 20th century. The crisis in mathematics occured at the beginning of the century and the main problem was to deal with certain infinities that are directly related to the concept of real number. Poincaré [31] explained this crisis in terms of different attitudes to infinity, related to Aristotle’s actual infinity and the potential infinity (the first attitude believes that the actual infinity exists, we begin with the collection in which we find the preexisting objects, the second holds that a collection is formed by successively adding new members, it is infinite because we can see no reason why this process should stop). It led finally to the emergence of new, nonstandard definitions of real numbers. The crisis in physics concerns the interpretation of the quantum theory, the measurement problem and the question of nonlocality. In previous works we showed how in principle certain paradoxes of the quantum theory can be explained provided we enlarge our conception of number [10].Our goal was to show how the basic axioms of quantum mechanics can be reformulated in terms of nonstandard real numbers that we call qrumbers. It is our goal in the present paper to analyze nonlocality and the concept of spacetime at the light of the new conceptual tools that we developed in the past.
Tous droits réservésDogmas and the Changing Images of Foundations
"... Le contenu de ce site relève de la législation française sur la propriété intellectuelle et est la propriété exclusive de l'éditeur. Les œuvres figurant sur ce site peuvent être consultées et reproduites sur un support papier ou numérique sous réserve qu'elles soient strictement réservées à un usage ..."
Abstract
 Add to MetaCart
Le contenu de ce site relève de la législation française sur la propriété intellectuelle et est la propriété exclusive de l'éditeur. Les œuvres figurant sur ce site peuvent être consultées et reproduites sur un support papier ou numérique sous réserve qu'elles soient strictement réservées à un usage soit personnel, soit scientifique ou pédagogique excluant toute exploitation commerciale. La reproduction devra obligatoirement mentionner l'éditeur, le nom de la revue, l'auteur et la référence du document. Toute autre reproduction est interdite sauf accord préalable de l'éditeur, en dehors des cas prévus par la législation en vigueur en France. Revues.org est un portail de revues en sciences humaines et sociales développé par le Cléo, Centre pour l'édition