Results 1  10
of
75
Randomized Gossip Algorithms
 IEEE TRANSACTIONS ON INFORMATION THEORY
, 2006
"... Motivated by applications to sensor, peertopeer, and ad hoc networks, we study distributed algorithms, also known as gossip algorithms, for exchanging information and for computing in an arbitrarily connected network of nodes. The topology of such networks changes continuously as new nodes join a ..."
Abstract

Cited by 208 (5 self)
 Add to MetaCart
Motivated by applications to sensor, peertopeer, and ad hoc networks, we study distributed algorithms, also known as gossip algorithms, for exchanging information and for computing in an arbitrarily connected network of nodes. The topology of such networks changes continuously as new nodes join and old nodes leave the network. Algorithms for such networks need to be robust against changes in topology. Additionally, nodes in sensor networks operate under limited computational, communication, and energy resources. These constraints have motivated the design of “gossip ” algorithms: schemes which distribute the computational burden and in which a node communicates with a randomly chosen neighbor. We analyze the averaging problem under the gossip constraint for an arbitrary network graph, and find that the averaging time of a gossip algorithm depends on the second largest eigenvalue of a doubly stochastic matrix characterizing the algorithm. Designing the fastest gossip algorithm corresponds to minimizing this eigenvalue, which is a semidefinite program (SDP). In general, SDPs cannot be solved in a distributed fashion; however, exploiting problem structure, we propose a distributed subgradient method that solves the optimization problem over the network. The relation of averaging time to the second largest eigenvalue naturally relates it to the mixing time of a random walk with transition probabilities derived from the gossip algorithm. We use this connection to study the performance and scaling of gossip algorithms on two popular networks: Wireless Sensor Networks, which are modeled as Geometric Random Graphs, and the Internet graph under the socalled Preferential Connectivity (PC) model.
An InteriorPoint Method for Semidefinite Programming
, 2005
"... We propose a new interior point based method to minimize a linear function of a matrix variable subject to linear equality and inequality constraints over the set of positive semidefinite matrices. We show that the approach is very efficient for graph bisection problems, such as maxcut. Other appli ..."
Abstract

Cited by 207 (17 self)
 Add to MetaCart
We propose a new interior point based method to minimize a linear function of a matrix variable subject to linear equality and inequality constraints over the set of positive semidefinite matrices. We show that the approach is very efficient for graph bisection problems, such as maxcut. Other applications include maxmin eigenvalue problems and relaxations for the stable set problem.
Fast Linear Iterations for Distributed Averaging
 Systems and Control Letters
, 2003
"... We consider the problem of finding a linear iteration that yields distributed averaging consensus over a network, i.e., that asymptotically computes the average of some initial values given at the nodes. When the iteration is assumed symmetric, the problem of finding the fastest converging linear ..."
Abstract

Cited by 190 (12 self)
 Add to MetaCart
We consider the problem of finding a linear iteration that yields distributed averaging consensus over a network, i.e., that asymptotically computes the average of some initial values given at the nodes. When the iteration is assumed symmetric, the problem of finding the fastest converging linear iteration can be cast as a semidefinite program, and therefore efficiently and globally solved. These optimal linear iterations are often substantially faster than several common heuristics that are based on the Laplacian of the associated graph.
A Spectral Bundle Method for Semidefinite Programming
 SIAM Journal on Optimization
, 1997
"... . A central drawback of primaldual interior point methods for semidefinite programs is their lack of ability to exploit problem structure in cost and coefficient matrices. This restricts applicability to problems of small dimension. Typically semidefinite relaxations arising in combinatorial applic ..."
Abstract

Cited by 141 (6 self)
 Add to MetaCart
. A central drawback of primaldual interior point methods for semidefinite programs is their lack of ability to exploit problem structure in cost and coefficient matrices. This restricts applicability to problems of small dimension. Typically semidefinite relaxations arising in combinatorial applications have sparse and well structured cost and coefficient matrices of huge order. We present a method that allows to compute acceptable approximations to the optimal solution of large problems within reasonable time. Semidefinite programming problems with constant trace on the primal feasible set are equivalent to eigenvalue optimization problems. These are convex nonsmooth programming problems and can be solved by bundle methods. We propose replacing the traditional polyhedral cutting plane model constructed from subgradient information by a semidefinite model that is tailored for eigenvalue problems. Convergence follows from the traditional approach but a proof is included for completene...
The Complex Structures Singular Value
, 1993
"... A tutorial introduction to the complex structured singular value (µ) is presented, with an emphasis on the mathematical aspects of µ. The µbased methods discussed here have been useful for analyzing the performance and robustness properties of linear feedback systems. Several tests ..."
Abstract

Cited by 119 (10 self)
 Add to MetaCart
A tutorial introduction to the complex structured singular value (µ) is presented, with an emphasis on the mathematical aspects of µ. The µbased methods discussed here have been useful for analyzing the performance and robustness properties of linear feedback systems. Several tests
The Mathematics Of Eigenvalue Optimization
, 2003
"... Optimization problems involving the eigenvalues of symmetric and nonsymmetric matrices present a fascinating mathematical challenge. Such problems arise often in theory and practice, particularly in engineering design, and are amenable to a rich blend of classical mathematical techniques and contemp ..."
Abstract

Cited by 92 (13 self)
 Add to MetaCart
Optimization problems involving the eigenvalues of symmetric and nonsymmetric matrices present a fascinating mathematical challenge. Such problems arise often in theory and practice, particularly in engineering design, and are amenable to a rich blend of classical mathematical techniques and contemporary optimization theory. This essay presents a personal choice of some central mathematical ideas, outlined for the broad optimization community. I discuss the convex analysis of spectral functions and invariant matrix norms, touching briey on semide nite representability, and then outlining two broader algebraic viewpoints based on hyperbolic polynomials and Lie algebra. Analogous nonconvex notions lead into eigenvalue perturbation theory. The last third of the article concerns stability, for polynomials, matrices, and associated dynamical systems, ending with a section on robustness. The powerful and elegant language of nonsmooth analysis appears throughout, as a unifying narrative thread.
The Quadratic Assignment Problem: A Survey and Recent Developments
 In Proceedings of the DIMACS Workshop on Quadratic Assignment Problems, volume 16 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science
, 1994
"... . Quadratic Assignment Problems model many applications in diverse areas such as operations research, parallel and distributed computing, and combinatorial data analysis. In this paper we survey some of the most important techniques, applications, and methods regarding the quadratic assignment probl ..."
Abstract

Cited by 91 (16 self)
 Add to MetaCart
. Quadratic Assignment Problems model many applications in diverse areas such as operations research, parallel and distributed computing, and combinatorial data analysis. In this paper we survey some of the most important techniques, applications, and methods regarding the quadratic assignment problem. We focus our attention on recent developments. 1. Introduction Given a set N = f1; 2; : : : ; ng and n \Theta n matrices F = (f ij ) and D = (d kl ), the quadratic assignment problem (QAP) can be stated as follows: min p2\Pi N n X i=1 n X j=1 f ij d p(i)p(j) + n X i=1 c ip(i) ; where \Pi N is the set of all permutations of N . One of the major applications of the QAP is in location theory where the matrix F = (f ij ) is the flow matrix, i.e. f ij is the flow of materials from facility i to facility j, and D = (d kl ) is the distance matrix, i.e. d kl represents the distance from location k to location l [62, 67, 137]. The cost of simultaneously assigning facility i to locat...
Fastest Mixing Markov Chain on A Graph
 SIAM REVIEW
, 2003
"... We consider a symmetric random walk on a connected graph, where each edge is labeled with the probability of transition between the two adjacent vertices. The associated Markov chain has a uniform equilibrium distribution; the rate of convergence to this distribution, i.e. the mixing rate of the Mar ..."
Abstract

Cited by 90 (15 self)
 Add to MetaCart
We consider a symmetric random walk on a connected graph, where each edge is labeled with the probability of transition between the two adjacent vertices. The associated Markov chain has a uniform equilibrium distribution; the rate of convergence to this distribution, i.e. the mixing rate of the Markov chain, is determined by the second largest (in magnitude) eigenvalue of the transition matrix. In this paper we address the problem of assigning probabilities to the edges of the graph in such a way as to minimize the second largest magnitude eigenvalue, i.e., the problem of finding the fastest mixing Markov chain on the graph. We show that
A PrimalDual Potential Reduction Method for Problems Involving Matrix Inequalities
 in Protocol Testing and Its Complexity", Information Processing Letters Vol.40
, 1995
"... We describe a potential reduction method for convex optimization problems involving matrix inequalities. The method is based on the theory developed by Nesterov and Nemirovsky and generalizes Gonzaga and Todd's method for linear programming. A worstcase analysis shows that the number of iterations ..."
Abstract

Cited by 87 (21 self)
 Add to MetaCart
We describe a potential reduction method for convex optimization problems involving matrix inequalities. The method is based on the theory developed by Nesterov and Nemirovsky and generalizes Gonzaga and Todd's method for linear programming. A worstcase analysis shows that the number of iterations grows as the square root of the problem size, but in practice it appears to grow more slowly. As in other interiorpoint methods the overall computational effort is therefore dominated by the leastsquares system that must be solved in each iteration. A type of conjugategradient algorithm can be used for this purpose, which results in important savings for two reasons. First, it allows us to take advantage of the special structure the problems often have (e.g., Lyapunov or algebraic Riccati inequalities). Second, we show that the polynomial bound on the number of iterations remains valid even if the conjugategradient algorithm is not run until completion, which in practice can greatly reduce the computational effort per iteration.