Results 1  10
of
141
Numerical solution of saddle point problems
 ACTA NUMERICA
, 2005
"... Large linear systems of saddle point type arise in a wide variety of applications throughout computational science and engineering. Due to their indefiniteness and often poor spectral properties, such linear systems represent a significant challenge for solver developers. In recent years there has b ..."
Abstract

Cited by 178 (27 self)
 Add to MetaCart
Large linear systems of saddle point type arise in a wide variety of applications throughout computational science and engineering. Due to their indefiniteness and often poor spectral properties, such linear systems represent a significant challenge for solver developers. In recent years there has been a surge of interest in saddle point problems, and numerous solution techniques have been proposed for solving this type of systems. The aim of this paper is to present and discuss a large selection of solution methods for linear systems in saddle point form, with an emphasis on iterative methods for large and sparse problems.
On the DouglasRachford splitting method and the proximal point algorithm for maximal monotone operators
, 1992
"... ..."
Optimization by direct search: New perspectives on some classical and modern methods
 SIAM Review
, 2003
"... Abstract. Direct search methods are best known as unconstrained optimization techniques that do not explicitly use derivatives. Direct search methods were formally proposed and widely applied in the 1960s but fell out of favor with the mathematical optimization community by the early 1970s because t ..."
Abstract

Cited by 123 (13 self)
 Add to MetaCart
Abstract. Direct search methods are best known as unconstrained optimization techniques that do not explicitly use derivatives. Direct search methods were formally proposed and widely applied in the 1960s but fell out of favor with the mathematical optimization community by the early 1970s because they lacked coherent mathematical analysis. Nonetheless, users remained loyal to these methods, most of which were easy to program, some of which were reliable. In the past fifteen years, these methods have seen a revival due, in part, to the appearance of mathematical analysis, as well as to interest in parallel and distributed computing. This review begins by briefly summarizing the history of direct search methods and considering the special properties of problems for which they are well suited. Our focus then turns to a broad class of methods for which we provide a unifying framework that lends itself to a variety of convergence results. The underlying principles allow generalization to handle bound constraints and linear constraints. We also discuss extensions to problems with nonlinear constraints.
LAGRANGE MULTIPLIERS AND OPTIMALITY
, 1993
"... Lagrange multipliers used to be viewed as auxiliary variables introduced in a problem of constrained minimization in order to write firstorder optimality conditions formally as a system of equations. Modern applications, with their emphasis on numerical methods and more complicated side conditions ..."
Abstract

Cited by 88 (7 self)
 Add to MetaCart
Lagrange multipliers used to be viewed as auxiliary variables introduced in a problem of constrained minimization in order to write firstorder optimality conditions formally as a system of equations. Modern applications, with their emphasis on numerical methods and more complicated side conditions than equations, have demanded deeper understanding of the concept and how it fits into a larger theoretical picture. A major line of research has been the nonsmooth geometry of onesided tangent and normal vectors to the set of points satisfying the given constraints. Another has been the gametheoretic role of multiplier vectors as solutions to a dual problem. Interpretations as generalized derivatives of the optimal value with respect to problem parameters have also been explored. Lagrange multipliers are now being seen as arising from a general rule for the subdifferentiation of a nonsmooth objective function which allows blackandwhite constraints to be replaced by penalty expressions. This paper traces such themes in the current theory of Lagrange multipliers, providing along the way a freestanding exposition of basic nonsmooth analysis as motivated by and applied to this subject.
Bregman iterative algorithms for ℓ1minimization with applications to compressed sensing
 SIAM J. Imaging Sci
, 2008
"... Abstract. We propose simple and extremely efficient methods for solving the basis pursuit problem min{‖u‖1: Au = f,u ∈ R n}, which is used in compressed sensing. Our methods are based on Bregman iterative regularization, and they give a very accurate solution after solving only a very small number o ..."
Abstract

Cited by 62 (14 self)
 Add to MetaCart
Abstract. We propose simple and extremely efficient methods for solving the basis pursuit problem min{‖u‖1: Au = f,u ∈ R n}, which is used in compressed sensing. Our methods are based on Bregman iterative regularization, and they give a very accurate solution after solving only a very small number of 1 instances of the unconstrained problem minu∈Rn μ‖u‖1 + 2 ‖Au−fk ‖ 2 2 for given matrix A and vector f k. We show analytically that this iterative approach yields exact solutions in a finite number of steps and present numerical results that demonstrate that as few as two to six iterations are sufficient in most cases. Our approach is especially useful for many compressed sensing applications where matrixvector operations involving A and A ⊤ can be computed by fast transforms. Utilizing a fast fixedpoint continuation solver that is based solely on such operations for solving the above unconstrained subproblem, we were able to quickly solve huge instances of compressed sensing problems on a standard PC.
On Augmented Lagrangian methods with general lowerlevel constraints
, 2005
"... Augmented Lagrangian methods with general lowerlevel constraints are considered in the present research. These methods are useful when efficient algorithms exist for solving subproblems where the constraints are only of the lowerlevel type. Two methods of this class are introduced and analyzed. In ..."
Abstract

Cited by 59 (6 self)
 Add to MetaCart
Augmented Lagrangian methods with general lowerlevel constraints are considered in the present research. These methods are useful when efficient algorithms exist for solving subproblems where the constraints are only of the lowerlevel type. Two methods of this class are introduced and analyzed. Inexact resolution of the lowerlevel constrained subproblems is considered. Global convergence is proved using the Constant Positive Linear Dependence constraint qualification. Conditions for boundedness of the penalty parameters are discussed. The reliability of the approach is tested by means of an exhaustive comparison against Lancelot. All the problems of the Cute collection are used in this comparison. Moreover, the resolution of location problems in which many constraints of the lowerlevel set are nonlinear is addressed, employing the Spectral Projected Gradient method for solving the subproblems. Problems of this type with more than 3 × 10 6 variables and 14 × 10 6 constraints are solved in this way, using moderate computer time.
Fast image recovery using variable splitting and constrained optimization
 IEEE Trans. Image Process
, 2010
"... Abstract—We propose a new fast algorithm for solving one of the standard formulations of image restoration and reconstruction which consists of an unconstrained optimization problem where the objective includes an `2 datafidelity term and a nonsmooth regularizer. This formulation allows both wavele ..."
Abstract

Cited by 49 (10 self)
 Add to MetaCart
Abstract—We propose a new fast algorithm for solving one of the standard formulations of image restoration and reconstruction which consists of an unconstrained optimization problem where the objective includes an `2 datafidelity term and a nonsmooth regularizer. This formulation allows both waveletbased (with orthogonal or framebased representations) regularization or totalvariation regularization. Our approach is based on a variable splitting to obtain an equivalent constrained optimization formulation, which is then addressed with an augmented Lagrangian method. The proposed algorithm is an instance of the socalled alternating direction method of multipliers, for which convergence has been proved. Experiments on a set of image restoration and reconstruction benchmark problems show that the proposed algorithm is faster than the current state of the art methods. Index Terms—Augmented Lagrangian, compressive sensing, convex optimization, image reconstruction, image restoration,
Trust Region Augmented Lagrangian Methods for Sequential Response . . .
 Journal of Mechanical Design
, 1997
"... A common engineering practice is the use of approximation models in place of expensive computer simulations to drive a multidisciplinary design process based on nonlinear programming techniques. The use of approximation strategies is designed to reduce the number of detailed, costly computer simulat ..."
Abstract

Cited by 48 (16 self)
 Add to MetaCart
A common engineering practice is the use of approximation models in place of expensive computer simulations to drive a multidisciplinary design process based on nonlinear programming techniques. The use of approximation strategies is designed to reduce the number of detailed, costly computer simulations required during optimization while maintaining the pertinent features of the design problem. To date the primary focus of most approximate optimization strategies is that application of the method should lead to improved designs. This is a laudable attribute and certainly relevant for practicing designers. However to date few researchers have focused on the development of approximate optimization strategies that are assured of converging to a solution of the original problem. Recent works based on trust region model management strategies have shown promise in managing convergence in unconstrained approximate minimization. In this research we extend these well established notions from the literature on trustregion methods to manage the convergence of the more general approximate optimization problem where equality, inequality and variable bound constraints are present.The primary concern addressed in this study is how to manage the interaction between the optimization and the fidelity of the approximation models to ensure that the process converges to a solution of the original constrained design problem. Using a trustregion model management strategy, coupled with an augmented Lagrangian approach for constrained approximate optimization, one can show that the optimization process converges to a solution of the original problem. In this research an approx1 Graduate Research Assistant.
An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems
 IEEE Trans. Image Process
, 2011
"... Abstract—We propose a new fast algorithm for solving one of the standard approaches to illposed linear inverse problems (IPLIP), where a (possibly nonsmooth) regularizer is minimized under the constraint that the solution explains the observations sufficiently well. Although the regularizer and con ..."
Abstract

Cited by 41 (4 self)
 Add to MetaCart
Abstract—We propose a new fast algorithm for solving one of the standard approaches to illposed linear inverse problems (IPLIP), where a (possibly nonsmooth) regularizer is minimized under the constraint that the solution explains the observations sufficiently well. Although the regularizer and constraint are usually convex, several particular features of these problems (huge dimensionality, nonsmoothness) preclude the use of offtheshelf optimization tools and have stimulated a considerable amount of research. In this paper, we propose a new efficient algorithm to handle one class of constrained problems (often known as basis pursuit denoising) tailored to image recovery applications. The proposed algorithm, which belongs to the family of augmented Lagrangian methods, can be used to deal with a variety of imaging IPLIP, including deconvolution and reconstruction from compressive observations (such as MRI), using either totalvariation or waveletbased (or, more generally, framebased) regularization. The proposed algorithm is an instance of the socalled alternating direction method of multipliers, for which convergence sufficient conditions are known; we show that these conditions are satisfied by the proposed algorithm. Experiments on a set of image restoration and reconstruction benchmark problems show that the proposed algorithm is a strong contender for the stateoftheart. Index Terms—Convex optimization, frames, image reconstruction, image restoration, inpainting, totalvariation. A. Problem Formulation
Alternating direction algorithms for ℓ1problems in compressive sensing
, 2009
"... Abstract. In this paper, we propose and study the use of alternating direction algorithms for several ℓ1norm minimization problems arising from sparse solution recovery in compressive sensing, including the basis pursuit problem, the basispursuit denoising problems of both unconstrained and constr ..."
Abstract

Cited by 23 (2 self)
 Add to MetaCart
Abstract. In this paper, we propose and study the use of alternating direction algorithms for several ℓ1norm minimization problems arising from sparse solution recovery in compressive sensing, including the basis pursuit problem, the basispursuit denoising problems of both unconstrained and constrained forms, as well as others. We present and investigate two classes of algorithms derived from either the primal or the dual forms of the ℓ1problems. The construction of the algorithms consists of two main steps: (1) to reformulate an ℓ1problem into one having partially separable objective functions by adding new variables and constraints; and (2) to apply an exact or inexact alternating direction method to the resulting problem. The derived alternating direction algorithms can be regarded as firstorder primaldual algorithms because both primal and dual variables are updated at each and every iteration. Convergence properties of these algorithms are established or restated when they already exist. Extensive numerical results in comparison with several stateoftheart algorithms are given to demonstrate that the proposed algorithms are efficient, stable and robust. Moreover, we present numerical results to emphasize two practically important but perhaps overlooked points. One point is that algorithm speed should always be evaluated relative to appropriate solution accuracy; another is that whenever erroneous measurements possibly exist, the ℓ1norm fidelity should be the fidelity of choice in compressive sensing. Key words. Sparse solution recovery, compressive sensing, ℓ1minimization, primal, dual, alternating direction method