Results 1 
6 of
6
Euclidean algorithms are Gaussian
, 2003
"... Abstract. We prove a Central Limit Theorem for a general class of costparameters associated to the three standard Euclidean algorithms, with optimal speed of convergence, and error terms for the mean and variance. For the most basic parameter of the algorithms, the number of steps, we go further an ..."
Abstract

Cited by 28 (12 self)
 Add to MetaCart
(Show Context)
Abstract. We prove a Central Limit Theorem for a general class of costparameters associated to the three standard Euclidean algorithms, with optimal speed of convergence, and error terms for the mean and variance. For the most basic parameter of the algorithms, the number of steps, we go further and prove a Local Limit Theorem (LLT), with speed of convergence O((log N) −1/4+ǫ). This extends and improves the LLT obtained by Hensley [27] in the case of the standard Euclidean algorithm. We use a “dynamical analysis ” methodology, viewing an algorithm as a dynamical system (restricted to rational inputs), and combining tools imported from dynamics, such as the crucial transfer operators, with various other techniques: Dirichlet series, Perron’s formula, quasipowers theorems, the saddle point method. Dynamical analysis had previously been used to perform averagecase analysis of algorithms. For the present (dynamical) analysis in distribution, we require precise estimates on the transfer operators, when a parameter varies along vertical lines in the complex plane. Such estimates build on results obtained only recently by Dolgopyat in the context of continuoustime dynamics [20]. 1.
Dynamical Analysis of a Class of Euclidean Algorithms
"... We develop a general framework for the analysis of algorithms of a broad Euclidean type. The averagecase complexity of an algorithm is seen to be related to the analytic behaviour in the complex plane of the set of elementary transformations determined by the algorithm. The methods rely on properti ..."
Abstract

Cited by 19 (5 self)
 Add to MetaCart
(Show Context)
We develop a general framework for the analysis of algorithms of a broad Euclidean type. The averagecase complexity of an algorithm is seen to be related to the analytic behaviour in the complex plane of the set of elementary transformations determined by the algorithm. The methods rely on properties of transfer operators suitably adapted from dynamical systems theory. As a consequence, we obtain precise averagecase analyses of algorithms for evaluating the Jacobi symbol of computational number theory fame, thereby solving conjectures of Bach and Shallit. These methods also provide a unifying framework for the analysis of an entire class of gcdlike algorithms together with new results regarding the probable behaviour of their cost functions. 1
Average BitComplexity of Euclidean Algorithms
 Proceedings ICALP’00, Lecture Notes Comp. Science 1853, 373–387
, 2000
"... We obtain new results regarding the precise average bitcomplexity of five algorithms of a broad Euclidean type. We develop a general framework for analysis of algorithms, where the averagecase complexity of an algorithm is seen to be related to the analytic behaviour in the complex plane of the set ..."
Abstract

Cited by 18 (7 self)
 Add to MetaCart
(Show Context)
We obtain new results regarding the precise average bitcomplexity of five algorithms of a broad Euclidean type. We develop a general framework for analysis of algorithms, where the averagecase complexity of an algorithm is seen to be related to the analytic behaviour in the complex plane of the set of elementary transformations determined by the algorithms. The methods rely on properties of transfer operators suitably adapted from dynamical systems theory and provide a unifying framework for the analysis of an entire class of gcdlike algorithms. Keywords: Averagecase Analysis of algorithms, BitComplexity, Euclidean Algorithms, Dynamical Systems, Ruelle operators, Generating Functions, Dirichlet Series, Tauberian Theorems. 1 Introduction Motivations. Euclid's algorithm was analysed first in the worst case in 1733 by de Lagny, then in the averagecase around 1969 independently by Heilbronn [12] and Dixon [6], and finally in distribution by Hensley [13] who proved in 1994 that the Eu...
Digits and Continuants in Euclidean Algorithms. Ergodic versus Tauberian Theorems
, 2000
"... We obtain new results regarding the precise average case analysis of the main quantities that intervene in algorithms of a broad Euclidean type. We develop a general framework for the analysis of such algorithms, where the averagecase complexity of an algorithm is related to the analytic behaviou ..."
Abstract

Cited by 16 (6 self)
 Add to MetaCart
We obtain new results regarding the precise average case analysis of the main quantities that intervene in algorithms of a broad Euclidean type. We develop a general framework for the analysis of such algorithms, where the averagecase complexity of an algorithm is related to the analytic behaviour in the complex plane of the set of elementary transformations determined by the algorithms. The methods rely on properties of transfer operators suitably adapted from dynamical systems theory and provide a unifying framework for the analysis of the main parameters digits and continuants that intervene in an entire class of gcdlike algorithms. We operate a general transfer from the continuous case (Continued Fraction Algorithms) to the discrete case (Euclidean Algorithms), where Ergodic Theorems are replaced by Tauberian Theorems.
Dynamical Analysis of αEuclidean Algorithms
, 2002
"... We study a class of Euclidean algorithms related to divisions where the remainder belongs to [α  1, α], for some α 2 [0; 1]. The paper is devoted to the averagecase analysis of these algorithms, in terms of number of steps or bitcomplexity. This is a new instance of the socalled "dynamica ..."
Abstract

Cited by 9 (3 self)
 Add to MetaCart
We study a class of Euclidean algorithms related to divisions where the remainder belongs to [α  1, α], for some α 2 [0; 1]. The paper is devoted to the averagecase analysis of these algorithms, in terms of number of steps or bitcomplexity. This is a new instance of the socalled "dynamical analysis" method, where it is made a deep use of dynamical systems. Here, the dynamical systems of interest have an infinite of branches and they are not markovian, so that the general framework of dynamical analysis is more complex to adapt to this case.
A Unifying Framework for the Analysis of a Class of Euclidean Algorithms
 the proceedings of LATIN'2000, LNCS
, 2000
"... . We develop a general framework for the analysis of algorithms of a broad Euclidean type. The averagecase complexity of an algorithm is seen to be related to the analytic behaviour in the complex plane of the set of elementary transformations determined by the algorithms. The methods rely on p ..."
Abstract

Cited by 6 (2 self)
 Add to MetaCart
. We develop a general framework for the analysis of algorithms of a broad Euclidean type. The averagecase complexity of an algorithm is seen to be related to the analytic behaviour in the complex plane of the set of elementary transformations determined by the algorithms. The methods rely on properties of transfer operators suitably adapted from dynamical systems theory. As a consequence, we obtain precise averagecase analyses of four algorithms for evaluating the Jacobi symbol of computational number theory fame, thereby solving conjectures of Bach and Shallit. These methods provide a unifying framework for the analysis of an entire class of gcdlike algorithms together with new results regarding the probable behaviour of their cost functions. 1 Introduction Euclid's algorithm, discovered as early as 300BC, was analysed first in the worst case in 1733 by de Lagny, then in the averagecase around 1969 independently by Heilbronn [8] and Dixon [5], and finally in distribut...