Results 1  10
of
55
A method computing multiple roots of inexact polynomials
 In Sendra [29
, 2003
"... ..."
(Show Context)
Certified approximate univariate GCDs
 METHODS IN ALGEBRAIC GEOMETRY, 117 & 118:229251
, 1997
"... We study the approximate GCD of two univariate polynomials given with limited accuracy or, equivalently, the exact GCD of the perturbed polynomials within some prescribed tolerance. A perturbed polynomial is regarded as a family of polynomials in a classification space, which leads to an accurate an ..."
Abstract

Cited by 54 (5 self)
 Add to MetaCart
We study the approximate GCD of two univariate polynomials given with limited accuracy or, equivalently, the exact GCD of the perturbed polynomials within some prescribed tolerance. A perturbed polynomial is regarded as a family of polynomials in a classification space, which leads to an accurate analysis of the computation. Considering only the Sylvester matrix singular values, as is frequently suggested in the literature, does not suffice to solve the problem completely, even when the extended euclidean algorithm is also used. We provide a counterexample that illustrates this claim and indicates the problem's hardness. SVD computations on subresultant matrices lead to upper bounds on the degree of the approximate GCD. Further use of the subresultant matrices singular values yields an approximate syzygy of the given polynomials, which is used to establish a gap theorem on certain singular values that certifies the maximumdegree approximate GCD. This approach leads directly to an algorithm for computing the approximate GCD polynomial. Lastly, we suggest the use of weighted norms in order to sharpen the theorem's conditions in a more intrinsic context.
Efficient Algorithms for Computing the Nearest Polynomial with Constrained Roots
, 1998
"... ..."
(Show Context)
Optimization Strategies for the Approximate GCD Problem
 IN PROC. ISSAC'98
, 1998
"... We describe algorithms for computing the greatest common divisor (GCD) of two univariate polynomials with inexactlyknown coefficients. Assuming that an estimate for the GCD degree is available (e.g., using an SVDbased algorithm), we formulate and solve a nonlinear optimization problem in order to d ..."
Abstract

Cited by 33 (3 self)
 Add to MetaCart
We describe algorithms for computing the greatest common divisor (GCD) of two univariate polynomials with inexactlyknown coefficients. Assuming that an estimate for the GCD degree is available (e.g., using an SVDbased algorithm), we formulate and solve a nonlinear optimization problem in order to determine the coefficients of the "best" GCD. We discuss various issues related to the implementation of the algorithms and present some preliminary test results.
Towards Factoring Bivariate Approximate Polynomials
"... A new algorithm is presented for factoring bivariate approximate polynomials over C [x, y]. Given a particular polynomial, the method constructs a nearby composite polynomial, if one exists, and its irreducible factors. Subject to a conjecture, the time to produce the factors is polynomial in the de ..."
Abstract

Cited by 25 (0 self)
 Add to MetaCart
A new algorithm is presented for factoring bivariate approximate polynomials over C [x, y]. Given a particular polynomial, the method constructs a nearby composite polynomial, if one exists, and its irreducible factors. Subject to a conjecture, the time to produce the factors is polynomial in the degree of the problem. This method has been implemented in Maple, and has been demonstrated to be efficient and numerically robust.
Displacement structure in computing approximate GCD of univariate polynomials
 In Proc. Sixth Asian Symposium on Computer Mathematics (ASCM 2003
, 2003
"... We propose a fast algorithm for computing approximate GCD of univariate polynomials with coefficients that are given only to a finite accuracy. The algorithm is based on a stabilized version of the generalized Schur algorithm for Sylvester matrix and its embedding. All computations can be done in O( ..."
Abstract

Cited by 21 (7 self)
 Add to MetaCart
(Show Context)
We propose a fast algorithm for computing approximate GCD of univariate polynomials with coefficients that are given only to a finite accuracy. The algorithm is based on a stabilized version of the generalized Schur algorithm for Sylvester matrix and its embedding. All computations can be done in O(n 2) operations, where n is the sum of the degrees of polynomials. The stability of the algorithm is also discussed. 1.
Numerical Computation Of A Polynomial GCD And Extensions
, 1996
"... In the first part of this paper, we dene approximate polynomial gcds (greatest common divisors) and extended gcds provided that approximations to the zeros of the input polynomials are available. We relate our novel definition to the older and weaker ones, based on perturbation of the coefficients o ..."
Abstract

Cited by 21 (5 self)
 Add to MetaCart
In the first part of this paper, we dene approximate polynomial gcds (greatest common divisors) and extended gcds provided that approximations to the zeros of the input polynomials are available. We relate our novel definition to the older and weaker ones, based on perturbation of the coefficients of the input polynomials, we demonstrate some deficiency of the latter definitions (which our denition avoids), and we propose new effective sequential and parallel (RNC and NC) algorithms for computing approximate gcds and extended gcds. Our stronger results are obtained with no increase of the asymptotic bounds on the computational cost. This is partly due to application of our recent nearly optimal algorithms for approximating polynomial zeros. In the second part of our paper, working under the older and more customary definition of approximate gcds, we modify and develop an alternative approach, which was previously based on the computation of the Singular Value Decomposition (SVD) of the associat...
A fast and numerically stable Euclideanlike algorithm for detecting relatively prime numerical polynomials
, 1998
"... In this paper we provide a fast, numerically stable algorithm to determine when two given polynomials a and b are relatively prime and remain relatively prime even after small perturbations of their coefficients. Such a problem is important in many applications where input data is only available up ..."
Abstract

Cited by 20 (3 self)
 Add to MetaCart
In this paper we provide a fast, numerically stable algorithm to determine when two given polynomials a and b are relatively prime and remain relatively prime even after small perturbations of their coefficients. Such a problem is important in many applications where input data is only available up to a certain precision. Our method  an extension of the CabayMeleshko algorithm for Pad'e approximation  is typically an order of magnitude faster than previously known stable methods. As such it may be used as an inexpensive test which may be applied before attempting to compute a "numerical GCD", in general a much more difficult task. We prove that the algorithm is numerically stable and give experiments verifying the numerical behaviour. Finally, we discuss possible extensions of our approach that can be applied to the problem of actually computing a numerical GCD. 1 Introduction Let a; b 2 C[z] be (univariate) polynomials with real or complex coefficients a(z) = a 0 + a 1 z + : : ...