Results 1  10
of
11
Geometry of Interaction and Linear Combinatory Algebras
, 2000
"... this paper was quite di#erent, stemming from the axiomatics of categories of tangles (although the authors were aware of possible connections to iteration theories. In fact, similar axiomatics in the symmetric case, motivated by flowcharts and "flownomials" had been developed some years ea ..."
Abstract

Cited by 57 (10 self)
 Add to MetaCart
this paper was quite di#erent, stemming from the axiomatics of categories of tangles (although the authors were aware of possible connections to iteration theories. In fact, similar axiomatics in the symmetric case, motivated by flowcharts and "flownomials" had been developed some years earlier by Stefanescu (Stefanescu 2000).) However, the first author realized, following a stimulating discussion with Gordon Plotkin, that traced monoidal categories provided a common denominator for the axiomatics of both the Girardstyle and AbramskyJagadeesanstyle versions of the Geometry of Interaction, at the basic level of the multiplicatives. This insight was presented in (Abramsky 1996), in which Girardstyle GoI was dubbed "particlestyle", since it concerns information particles or tokens flowing around a network, while the AbramskyJagadeesan style GoI was dubbed "wavestyle", since it concerns the evolution of a global information state or "wave". Formally, this distinction is based on whether the tensor product (i.e. the symmetric monoidal structure) in the underlying category is interpreted as a coproduct (particle style) or as a product (wave style). This computational distinction between coproduct and product interpretations of the same underlying network geometry turned out to have been partially anticipated, in a rather di#erent context, in a pioneering paper by E. S. Bainbridge (Bainbridge 1976), as observed by Dusko Pavlovic. These two forms of interpretation, and ways of combining them, have also been studied recently in (Stefanescu 2000). He uses the terminology "additive" for coproductbased (i.e. our "particlestyle") and "multiplicative" for productbased (i.e. our "wavestyle"); this is not suitable for our purposes, because of the clash with Linear Logic term...
Category theory for linear logicians
 Linear Logic in Computer Science
, 2004
"... This paper presents an introduction to category theory with an emphasis on those aspects relevant to the analysis of the model theory of linear logic. With this in mind, we focus on the basic definitions of category theory and categorical logic. An analysis of cartesian and cartesian closed categori ..."
Abstract

Cited by 11 (2 self)
 Add to MetaCart
(Show Context)
This paper presents an introduction to category theory with an emphasis on those aspects relevant to the analysis of the model theory of linear logic. With this in mind, we focus on the basic definitions of category theory and categorical logic. An analysis of cartesian and cartesian closed categories and their relation to intuitionistic logic is followed by a consideration of symmetric monoidal closed, linearly distributive and ∗autonomous categories and their relation to multiplicative linear logic. We examine nonsymmetric monoidal categories, and consider them as models of noncommutative linear logic. We introduce traced monoidal categories, and discuss their relation to the geometry of interaction. The necessary aspects of the theory of monads is introduced in order to describe the categorical modelling of the exponentials. We conclude by briefly describing the notion of full completeness, a strong form of categorical completeness, which originated in the categorical model theory of linear logic. No knowledge of category theory is assumed, but we do assume knowledge of linear logic sequent calculus and the standard models of linear logic, and modest familiarity with typed lambda calculus. 0
Towards a typed geometry of interaction
, 2005
"... We introduce a typed version of Girard’s Geometry of Interaction, called Multiobject GoI (MGoI) semantics. We give an MGoI interpretation for multiplicative linear logic (MLL) without units which applies to new kinds of models, including finite dimensional vector spaces. For MGoI (i) we develop a v ..."
Abstract

Cited by 8 (2 self)
 Add to MetaCart
We introduce a typed version of Girard’s Geometry of Interaction, called Multiobject GoI (MGoI) semantics. We give an MGoI interpretation for multiplicative linear logic (MLL) without units which applies to new kinds of models, including finite dimensional vector spaces. For MGoI (i) we develop a version of partial traces and trace ideals (related to previous work of Abramsky, Blute, and Panangaden); (ii) we do not require the existence of a reflexive object for our interpretation (the original GoI 1 and 2 were untyped and hence involved a bureaucracy of domain equation isomorphisms); (iii) we introduce an abstract notion of orthogonality (related to work of Hyland and Schalk) and use this to develop a version of Girard’s theory of types, datum and algorithms in our setting, (iv) we prove appropriate Soundness and Completeness Theorems for our interpretations in partially traced categories with orthogonality; (v) we end with an application to completeness of (the original) untyped GoI in a unique decomposition category.
From coalgebraic to monoidal traces
 Coalgebraic Methods in Computer Science (CMCS 2010), volume 264 of Elect. Notes in Theor. Comp. Sci
, 2010
"... The main result of this paper shows how coalgebraic traces, in suitable Kleisli categories, give rise to traced monoidal structure in those Kleisli categories, with finite coproducts as monoidal structure. At the heart of the matter lie partially additive monads inducing partially additive structure ..."
Abstract

Cited by 8 (2 self)
 Add to MetaCart
The main result of this paper shows how coalgebraic traces, in suitable Kleisli categories, give rise to traced monoidal structure in those Kleisli categories, with finite coproducts as monoidal structure. At the heart of the matter lie partially additive monads inducing partially additive structure in their Kleisli categories. By applying the standard “Int ” construction one obtains compact closed categories for “bidirectional monadic computation”. 1
Proofs as Polynomials
"... Replace this file with prentcsmacro.sty for your meeting, or with entcsmacro.sty for your meeting. Both can be ..."
Abstract

Cited by 6 (1 self)
 Add to MetaCart
Replace this file with prentcsmacro.sty for your meeting, or with entcsmacro.sty for your meeting. Both can be
Geometry of Interaction explained
"... The purpose of this paper is mostly expository. We first review the axiomatic framework recently proposed by Abramsky, Haghverdi and Scott [1] for Girard’s Geometry of Interaction [3] in terms of traced symmetric monoidal categories. We then work out in some detail how the new proposal captures Gir ..."
Abstract
 Add to MetaCart
(Show Context)
The purpose of this paper is mostly expository. We first review the axiomatic framework recently proposed by Abramsky, Haghverdi and Scott [1] for Girard’s Geometry of Interaction [3] in terms of traced symmetric monoidal categories. We then work out in some detail how the new proposal captures Girard’s original formulation.
CTCS 2004 Preliminary Version From Geometry of Interaction to Denotational Semantics
"... This is a preliminary version. The final version will be published inElectronic Notes in Theoretical Computer Science URL: www.elsevier.nl/locate/entcs ..."
Abstract
 Add to MetaCart
(Show Context)
This is a preliminary version. The final version will be published inElectronic Notes in Theoretical Computer Science URL: www.elsevier.nl/locate/entcs
*autonomous categories, Unique decomposition categories.
"... We analyze the categorical foundations of Girard’s Geometry of Interaction Program for Linear Logic. The motivation for the work comes from the importance of viewing GoI as a new kind of semantics and thus trying to relate it to extant semantics. In an earlier paper we showed that a special case of ..."
Abstract
 Add to MetaCart
(Show Context)
We analyze the categorical foundations of Girard’s Geometry of Interaction Program for Linear Logic. The motivation for the work comes from the importance of viewing GoI as a new kind of semantics and thus trying to relate it to extant semantics. In an earlier paper we showed that a special case of Abramsky’s GoI situations–ones based on Unique Decomposition Categories (UDC’s)–exactly captures Girard’s functional analytic models in his first GoI paper, including Girard’s original Execution formula in Hilbert spaces, his notions of orthogonality, types, datum, algorithm, etc. Here we associate to a UDCbased GoI Situation a denotational model (a ∗autonomous category (without units) with additional exponential structure). We then relate this model to some of the standard GoI models via a fullyfaithful embedding into a doublegluing category, thus connecting up GoI with earlier Full Completeness
A Categorical Model for the Geometry of Interaction Abstract
"... We consider the multiplicative and exponential fragment of linear logic (MELL) and give a Geometry of Interaction (GoI) semantics for it based on unique decomposition categories. We prove a Soundness and Finiteness Theorem for this interpretation. We show that Girard’s original approach to GoI 1 via ..."
Abstract
 Add to MetaCart
(Show Context)
We consider the multiplicative and exponential fragment of linear logic (MELL) and give a Geometry of Interaction (GoI) semantics for it based on unique decomposition categories. We prove a Soundness and Finiteness Theorem for this interpretation. We show that Girard’s original approach to GoI 1 via operator algebras is exactly captured in this categorical framework.