Results 1 
3 of
3
Geometry of Interaction and Linear Combinatory Algebras
, 2000
"... this paper was quite di#erent, stemming from the axiomatics of categories of tangles (although the authors were aware of possible connections to iteration theories. In fact, similar axiomatics in the symmetric case, motivated by flowcharts and "flownomials" had been developed some years earlier by S ..."
Abstract

Cited by 43 (10 self)
 Add to MetaCart
this paper was quite di#erent, stemming from the axiomatics of categories of tangles (although the authors were aware of possible connections to iteration theories. In fact, similar axiomatics in the symmetric case, motivated by flowcharts and "flownomials" had been developed some years earlier by Stefanescu (Stefanescu 2000).) However, the first author realized, following a stimulating discussion with Gordon Plotkin, that traced monoidal categories provided a common denominator for the axiomatics of both the Girardstyle and AbramskyJagadeesanstyle versions of the Geometry of Interaction, at the basic level of the multiplicatives. This insight was presented in (Abramsky 1996), in which Girardstyle GoI was dubbed "particlestyle", since it concerns information particles or tokens flowing around a network, while the AbramskyJagadeesan style GoI was dubbed "wavestyle", since it concerns the evolution of a global information state or "wave". Formally, this distinction is based on whether the tensor product (i.e. the symmetric monoidal structure) in the underlying category is interpreted as a coproduct (particle style) or as a product (wave style). This computational distinction between coproduct and product interpretations of the same underlying network geometry turned out to have been partially anticipated, in a rather di#erent context, in a pioneering paper by E. S. Bainbridge (Bainbridge 1976), as observed by Dusko Pavlovic. These two forms of interpretation, and ways of combining them, have also been studied recently in (Stefanescu 2000). He uses the terminology "additive" for coproductbased (i.e. our "particlestyle") and "multiplicative" for productbased (i.e. our "wavestyle"); this is not suitable for our purposes, because of the clash with Linear Logic term...
Semantics of interaction
, 1996
"... The “classical ” paradigm for denotational semantics models data types as domains, ��� � structured sets of some kind, and programs as (suitable) functions between domains. The semantic universe in which the denotational modelling is carried out is thus a category with domains as objects, functions ..."
Abstract

Cited by 36 (3 self)
 Add to MetaCart
The “classical ” paradigm for denotational semantics models data types as domains, ��� � structured sets of some kind, and programs as (suitable) functions between domains. The semantic universe in which the denotational modelling is carried out is thus a category with domains as objects, functions as morphisms, and composition of morphisms given by function composition. A sharp distinction is then drawn between denotational and operational semantics. Denotational semantics is often referred to as “mathematical semantics ” because it exhibits a high degree of mathematical structure; this is in part achieved by the fact that denotational semantics abstracts away from the dynamics of computation—from time. By contrast, operational semantics is formulated in terms of the syntax of the language being modelled; it is highly intensional in character; and it is capable of expressing the dynamical aspects of computation. The classical denotational paradigm has been very successful, but has some definite limitations. Firstly, finestructural features of computation, such as sequentiality,
Games in the Semantics of Programming Languages
 Dept. of Philosophy, University of Amsterdam
, 1997
"... ion for PCF Motivated by the full completeness results, it became of compelling interest to reexamine perhaps the bestknown "open problem" in the semantics of programming languages, namely the "Full Abstraction problem for PCF", using the new tools provided by game semantics. 2 PCF is a highero ..."
Abstract

Cited by 8 (1 self)
 Add to MetaCart
ion for PCF Motivated by the full completeness results, it became of compelling interest to reexamine perhaps the bestknown "open problem" in the semantics of programming languages, namely the "Full Abstraction problem for PCF", using the new tools provided by game semantics. 2 PCF is a higherorder functional programming language; modulo issues of the parameterpassing strategies, it forms a fragment of any programming language with higherorder procedures (which includes any reasonably expressive objectoriented language). The aspect of the Full Abstraction problem I personally found most interesting was: to construct a syntaxindependent model in which every element is the denotation of some program (note the analogy with full completeness, whose definition had in turn been motivated in part by this aspect of full abstraction). This is not how the problem was originally formulated, but by "general abstract nonsense", given such a model one can always quotient it to get a fully ab...