Results 1  10
of
23
A Linearly Typed Assembly Language
 In Workshop on Types in Compilation
"... Today's typesafe lowlevel languages rely on garbage collection to recycle heapallocated objects safely. We present LTAL, a safe, lowlevel, yet simple language that "stands on its own": it guarantees safe execution within a fixed memory space, without relying on external runtime support. We demo ..."
Abstract

Cited by 145 (35 self)
 Add to MetaCart
Today's typesafe lowlevel languages rely on garbage collection to recycle heapallocated objects safely. We present LTAL, a safe, lowlevel, yet simple language that "stands on its own": it guarantees safe execution within a fixed memory space, without relying on external runtime support. We demonstrate the expressiveness of LTAL by giving a typepreserving compiler for the functional core of ML. But this independence comes at a steep price: LTAL's type system imposes a draconian discipline of linearity that ensures that memory can be reused safely, but prohibits any useful kind of sharing. We present the results of experiments with a prototype LTAL system that show just how high the price of linearity can be.
Once Upon a Type
 In Functional Programming Languages and Computer Architecture
, 1995
"... A number of useful optimisations are enabled if we can determine when a value is accessed at most once. We extend the HindleyMilner type system with uses, yielding a typeinference based program analysis which determines when values are accessed at most once. Our analysis can handle higherorder fun ..."
Abstract

Cited by 81 (2 self)
 Add to MetaCart
A number of useful optimisations are enabled if we can determine when a value is accessed at most once. We extend the HindleyMilner type system with uses, yielding a typeinference based program analysis which determines when values are accessed at most once. Our analysis can handle higherorder functions and data structures, and admits principal types for terms. Unlike previous analyses, we prove our analysis sound with respect to callbyneed reduction. Callbyname reduction does not provide an accurate model of how often a value is used during lazy evaluation, since it duplicates work which would actually be shared in a real implementation. Our type system can easily be modified to analyse usage in a callbyvalue language. 1 Introduction This paper describes a method for determining when a value is used at most once. Our method is based on a simple modification of the HindleyMilner type system. Each type is labelled to indicate whether the corresponding value is used at most onc...
Models of Sharing Graphs: A Categorical Semantics of let and letrec
, 1997
"... To my parents A general abstract theory for computation involving shared resources is presented. We develop the models of sharing graphs, also known as term graphs, in terms of both syntax and semantics. According to the complexity of the permitted form of sharing, we consider four situations of sha ..."
Abstract

Cited by 62 (10 self)
 Add to MetaCart
To my parents A general abstract theory for computation involving shared resources is presented. We develop the models of sharing graphs, also known as term graphs, in terms of both syntax and semantics. According to the complexity of the permitted form of sharing, we consider four situations of sharing graphs. The simplest is firstorder acyclic sharing graphs represented by letsyntax, and others are extensions with higherorder constructs (lambda calculi) and/or cyclic sharing (recursive letrec binding). For each of four settings, we provide the equational theory for representing the sharing graphs, and identify the class of categorical models which are shown to be sound and complete for the theory. The emphasis is put on the algebraic nature of sharing graphs, which leads us to the semantic account of them. We describe the models in terms of the notions of symmetric monoidal categories and functors, additionally with symmetric monoidal adjunctions and traced
The Name Discipline of Uniform Receptiveness
 Theoretical Computer Science
, 1997
"... In a process calculus, we say that a name x is uniformly receptive for a process P if: (1) at any time P is ready to accept an input at x, at least as long as there are processes that could send messages at x; (2) the input offer at x is functional, that is, all messages received by P at x are appli ..."
Abstract

Cited by 58 (4 self)
 Add to MetaCart
In a process calculus, we say that a name x is uniformly receptive for a process P if: (1) at any time P is ready to accept an input at x, at least as long as there are processes that could send messages at x; (2) the input offer at x is functional, that is, all messages received by P at x are applied to the same continuation. In the calculus this discipline is employed, for instance, when modeling functions, objects, higherorder communications, remoteprocedure calls. We formulate the discipline of uniform receptiveness by means of a type system, and then we study its impact on behavioural equivalences and process reasoning. We develop some theory and proof techniques for uniform receptiveness, and illustrate their usefulness on some nontrivial examples.
A lambda calculus for quantum computation
 SIAM Journal of Computing
"... The classical lambda calculus may be regarded both as a programming language and as a formal algebraic system for reasoning about computation. It provides a computational model equivalent to the Turing machine, and continues to be of enormous benefit in the classical theory of computation. We propos ..."
Abstract

Cited by 49 (1 self)
 Add to MetaCart
The classical lambda calculus may be regarded both as a programming language and as a formal algebraic system for reasoning about computation. It provides a computational model equivalent to the Turing machine, and continues to be of enormous benefit in the classical theory of computation. We propose that quantum computation, like its classical counterpart, may benefit from a version of the lambda calculus suitable for expressing and reasoning about quantum algorithms. In this paper we develop a quantum lambda calculus as an alternative model of quantum computation, which combines some of the benefits of both the quantum Turing machine and the quantum circuit models. The calculus turns out to be closely related to the linear lambda calculi used in the study of Linear Logic. We set up a computational model and an equational proof system for this calculus, and we argue that it is equivalent to the quantum Turing machine.
Cyclic Lambda Calculi
, 1997
"... . We precisely characterize a class of cyclic lambdagraphs, and then give a sound and complete axiomatization of the terms that represent a given graph. The equational axiom system is an extension of lambda calculus with the letrec construct. In contrast to current theories, which impose restrictio ..."
Abstract

Cited by 36 (5 self)
 Add to MetaCart
. We precisely characterize a class of cyclic lambdagraphs, and then give a sound and complete axiomatization of the terms that represent a given graph. The equational axiom system is an extension of lambda calculus with the letrec construct. In contrast to current theories, which impose restrictions on where the rewriting can take place, our theory is very liberal, e.g., it allows rewriting under lambdaabstractions and on cycles. As shown previously, the reduction theory is nonconfluent. We thus introduce an approximate notion of confluence. Using this notion we define the infinite normal form or L'evyLongo tree of a cyclic term. We show that the infinite normal form defines a congruence on the set of terms. We relate our cyclic lambda calculus to the traditional lambda calculus and to the infinitary lambda calculus. Since most implementations of nonstrict functional languages rely on sharing to avoid repeating computations, we develop a variant of our calculus that enforces the ...
Linear Logic, Monads and the Lambda Calculus
 In 11 th LICS
, 1996
"... Models of intuitionistic linear logic also provide models of Moggi's computational metalanguage. We use the adjoint presentation of these models and the associated adjoint calculus to show that three translations, due mainly to Moggi, of the lambda calculus into the computational metalanguage (direc ..."
Abstract

Cited by 32 (4 self)
 Add to MetaCart
Models of intuitionistic linear logic also provide models of Moggi's computational metalanguage. We use the adjoint presentation of these models and the associated adjoint calculus to show that three translations, due mainly to Moggi, of the lambda calculus into the computational metalanguage (direct, callbyname and callbyvalue) correspond exactly to three translations, due mainly to Girard, of intuitionistic logic into intuitionistic linear logic. We also consider extending these results to languages with recursion. 1. Introduction Two of the most significant developments in semantics during the last decade are Girard's linear logic [10] and Moggi's computational metalanguage [14]. Any student of these formalisms will suspect that there are significant connections between the two, despite their apparent differences. The intuitionistic fragment of linear logic (ILL) may be modelled in a linear model  a symmetric monoidal closed category with a comonad ! which satisfies some extr...
Compilation by Transformation in NonStrict Functional Languages
, 1995
"... In this thesis we present and analyse a set of automatic sourcetosource program transformations that are suitable for incorporation in optimising compilers for lazy functional languages. These transformations improve the quality of code in many different respects, such as execution time and memory ..."
Abstract

Cited by 32 (1 self)
 Add to MetaCart
In this thesis we present and analyse a set of automatic sourcetosource program transformations that are suitable for incorporation in optimising compilers for lazy functional languages. These transformations improve the quality of code in many different respects, such as execution time and memory usage. The transformations presented are divided in two sets: global transformations, which are performed once (or sometimes twice) during the compilation process; and a set of local transformations, which are performed before and after each of the global transformations, so that they can simplify the code before applying the global transformations and also take advantage of them afterwards. Many of the local transformations are simple, well known, and do not have major effects on their own. They become important as they interact with each other and with global transformations, sometimes in nonobvious ways. We present how and why they improve the code, and perform extensive experiments wit...
Cut Rules and Explicit Substitutions
, 2000
"... this paper deals exclusively with intuitionistic logic (in fact, only the implicative fragment), we require succedents to be a single consequent formula. Natural deduction systems, which we choose to call Nsystems, are symbolic logics generally given via introduction and elimination rules for the l ..."
Abstract

Cited by 15 (0 self)
 Add to MetaCart
this paper deals exclusively with intuitionistic logic (in fact, only the implicative fragment), we require succedents to be a single consequent formula. Natural deduction systems, which we choose to call Nsystems, are symbolic logics generally given via introduction and elimination rules for the logical connectives which operate on the right, i.e., they manipulate the succedent formula. Examples are Gentzen's NJ and NK (Gentzen 1935). Logical deduction systems are given via leftintroduction and rightintroduction rules for the logical connectives. Although others have called these systems "sequent calculi", we call them Lsystems to avoid confusion with other systems given in sequent style. Examples are Gentzen's LK and LJ (Gentzen 1935). In this paper we are primarily interested in Lsystems. The advantage of Nsystems is that they seem closer to actual reasoning, while Lsystems on the other hand seem to have an easier proof theory. Lsystems are often extended with a "cut" rule as part of showing that for a given Lsystem and Nsystem, the derivations of each system can be encoded in the other. For example, NK proves the same as LK + cut (Gentzen 1935). Proof Normalization. A system is consistent when it is impossible to prove false, i.e., derive absurdity from zero assumptions. A system is analytic (has the analycity property) when there is an e#ective method to decompose any conclusion sequent into simpler premise sequents from which the conclusion can be obtained by some rule in the system such that the conclusion is derivable i# the premises are derivable (Maenpaa 1993). To achieve the goals of consistency and analycity, it has been customary to consider
Programming with Variable Functions
 In Proceedings of the 1998 ACM SIGPLAN International Conference on Functional Programming
, 1998
"... What is a good method to specify and derive imperative programs? This paper argues that a new form of functional programming fits the bill, where variable functions can be updated at specified points in their domain. Traditional algebraic specification and functional programming are a powerful pair ..."
Abstract

Cited by 8 (0 self)
 Add to MetaCart
What is a good method to specify and derive imperative programs? This paper argues that a new form of functional programming fits the bill, where variable functions can be updated at specified points in their domain. Traditional algebraic specification and functional programming are a powerful pair of tools for specifying and implementing domains of discourse and operations on them. Recent work on evolving algebras has introduced the function update in algebraic specifications, and has applied it with good success in the modelling of reactive systems. We show that similar concepts allow one to derive efficient programs in a systematic way from functional specifications. The final outcome of such a derivation can be made as efficient as a traditional imperative program with pointers, but can still be reasoned about at a high level. Variable functions can also play an important role in the structuring of large systems. They can subsume objectoriented programming languages, without incu...