Results 1  10
of
184
The Semantics Of Constraint Logic Programs
 JOURNAL OF LOGIC PROGRAMMING
, 1996
"... This paper presents for the first time the semantic foundations of CLP in a selfcontained and complete package. The main contributions are threefold. First, we extend the original conference paper by presenting definitions and basic semantic constructs from first principles, giving new and comp ..."
Abstract

Cited by 786 (13 self)
 Add to MetaCart
This paper presents for the first time the semantic foundations of CLP in a selfcontained and complete package. The main contributions are threefold. First, we extend the original conference paper by presenting definitions and basic semantic constructs from first principles, giving new and complete proofs for the main lemmas. Importantly, we clarify which theorems depend on conditions such as solution compactness, satisfaction completeness and independence of constraints. Second, we generalize the original results to allow for incompleteness of the constraint solver. This is important since almost all CLP systems use an incomplete solver. Third, we give conditions on the (possibly incomplete) solver which ensure that the operational semantics is confluent, that is, has independence of literal scheduling.
Uniform proofs as a foundation for logic programming
 ANNALS OF PURE AND APPLIED LOGIC
, 1991
"... A prooftheoretic characterization of logical languages that form suitable bases for Prologlike programming languages is provided. This characterization is based on the principle that the declarative meaning of a logic program, provided by provability in a logical system, should coincide with its ..."
Abstract

Cited by 375 (109 self)
 Add to MetaCart
A prooftheoretic characterization of logical languages that form suitable bases for Prologlike programming languages is provided. This characterization is based on the principle that the declarative meaning of a logic program, provided by provability in a logical system, should coincide with its operational meaning, provided by interpreting logical connectives as simple and fixed search instructions. The operational semantics is formalized by the identification of a class of cutfree sequent proofs called uniform proofs. A uniform proof is one that can be found by a goaldirected search that respects the interpretation of the logical connectives as search instructions. The concept of a uniform proof is used to define the notion of an abstract logic programming language, and it is shown that firstorder and higherorder Horn clauses with classical provability are examples of such a language. Horn clauses are then generalized to hereditary Harrop formulas and it is shown that firstorder and higherorder versions of this new class of formulas are also abstract logic programming languages if the inference rules are those of either intuitionistic or minimal logic. The programming language significance of the various generalizations to firstorder Horn clauses is briefly discussed.
Logic Programming in a Fragment of Intuitionistic Linear Logic
"... When logic programming is based on the proof theory of intuitionistic logic, it is natural to allow implications in goals and in the bodies of clauses. Attempting to prove a goal of the form D ⊃ G from the context (set of formulas) Γ leads to an attempt to prove the goal G in the extended context Γ ..."
Abstract

Cited by 302 (39 self)
 Add to MetaCart
When logic programming is based on the proof theory of intuitionistic logic, it is natural to allow implications in goals and in the bodies of clauses. Attempting to prove a goal of the form D ⊃ G from the context (set of formulas) Γ leads to an attempt to prove the goal G in the extended context Γ ∪ {D}. Thus during the bottomup search for a cutfree proof contexts, represented as the lefthand side of intuitionistic sequents, grow as stacks. While such an intuitionistic notion of context provides for elegant specifications of many computations, contexts can be made more expressive and flexible if they are based on linear logic. After presenting two equivalent formulations of a fragment of linear logic, we show that the fragment has a goaldirected interpretation, thereby partially justifying calling it a logic programming language. Logic programs based on the intuitionistic theory of hereditary Harrop formulas can be modularly embedded into this linear logic setting. Programming examples taken from theorem proving, natural language parsing, and data base programming are presented: each example requires a linear, rather than intuitionistic, notion of context to be modeled adequately. An interpreter for this logic programming language must address the problem of splitting contexts; that is, when attempting to prove a multiplicative conjunction (tensor), say G1 ⊗ G2, from the context ∆, the latter must be split into disjoint contexts ∆1 and ∆2 for which G1 follows from ∆1 and G2 follows from ∆2. Since there is an exponential number of such splits, it is important to delay the choice of a split as much as possible. A mechanism for the lazy splitting of contexts is presented based on viewing proof search as a process that takes a context, consumes part of it, and returns the rest (to be consumed elsewhere). In addition, we use collections of Kripke interpretations indexed by a commutative monoid to provide models for this logic programming language and show that logic programs admit a canonical model.
Complexity and Expressive Power of Logic Programming
, 1997
"... This paper surveys various complexity results on different forms of logic programming. The main focus is on decidable forms of logic programming, in particular, propositional logic programming and datalog, but we also mention general logic programming with function symbols. Next to classical results ..."
Abstract

Cited by 283 (57 self)
 Add to MetaCart
This paper surveys various complexity results on different forms of logic programming. The main focus is on decidable forms of logic programming, in particular, propositional logic programming and datalog, but we also mention general logic programming with function symbols. Next to classical results on plain logic programming (pure Horn clause programs), more recent results on various important extensions of logic programming are surveyed. These include logic programming with different forms of negation, disjunctive logic programming, logic programming with equality, and constraint logic programming. The complexity of the unification problem is also addressed.
Tabled Evaluation with Delaying for General Logic Programs
, 1996
"... SLD resolution with negation as finite failure (SLDNF) reflects the procedural interpretation of predicate calculus as a programming language and forms the computational basis for Prolog systems. Despite its advantages for stackbased memory management, SLDNF is often not appropriate for query evalu ..."
Abstract

Cited by 259 (27 self)
 Add to MetaCart
SLD resolution with negation as finite failure (SLDNF) reflects the procedural interpretation of predicate calculus as a programming language and forms the computational basis for Prolog systems. Despite its advantages for stackbased memory management, SLDNF is often not appropriate for query evaluation for three reasons: a) it may not terminate due to infinite positive recursion; b) it may not terminate due to infinite recursion through negation; c) it may repeatedly evaluate the same literal in a rule body, leading to unacceptable performance. We address three problems fir a goaloriented query evaluation of general logic programs by presenting tabled evaluation with delaying (SLG resolution).
Stable models and an alternative logic programming paradigm
 In The Logic Programming Paradigm: a 25Year Perspective
, 1999
"... In this paper we reexamine the place and role of stable model semantics in logic programming and contrast it with a least Herbrand model approach to Horn programs. We demonstrate that inherent features of stable model semantics naturally lead to a logic programming system that offers an interesting ..."
Abstract

Cited by 248 (18 self)
 Add to MetaCart
In this paper we reexamine the place and role of stable model semantics in logic programming and contrast it with a least Herbrand model approach to Horn programs. We demonstrate that inherent features of stable model semantics naturally lead to a logic programming system that offers an interesting alternative to more traditional logic programming styles of Horn logic programming, stratified logic programming and logic programming with wellfounded semantics. The proposed approach is based on the interpretation of program clauses as constraints. In this setting programs do not describe a single intended model, but a family of stable models. These stable models encode solutions to the constraint satisfaction problem described by the program. Our approach imposes restrictions on the syntax of logic programs. In particular, function symbols are eliminated from the language. We argue that the resulting logic programming system is wellattuned to problems in the class NP, has a welldefined domain of applications, and an emerging methodology of programming. We point out that what makes the whole approach viable is recent progress in implementations of algorithms to compute stable models of propositional logic programs. 1
Logic Programming and Negation: A Survey
 JOURNAL OF LOGIC PROGRAMMING
, 1994
"... We survey here various approaches which were proposed to incorporate negation in logic programs. We concentrate on the prooftheoretic and modeltheoretic issues and the relationships between them. ..."
Abstract

Cited by 242 (8 self)
 Add to MetaCart
We survey here various approaches which were proposed to incorporate negation in logic programs. We concentrate on the prooftheoretic and modeltheoretic issues and the relationships between them.
The Alternating Fixpoint of Logic Programs with Negation
, 1995
"... The alternating fixpoint of a logic program with negation is defined constructively. The underlying idea is monotonically to build up a set of negative conclusions until the least fixpoint is reached, using a transformation related to the one that defines stable models. From a fixed set of negative ..."
Abstract

Cited by 209 (2 self)
 Add to MetaCart
The alternating fixpoint of a logic program with negation is defined constructively. The underlying idea is monotonically to build up a set of negative conclusions until the least fixpoint is reached, using a transformation related to the one that defines stable models. From a fixed set of negative conclusions, the positive conclusions follow (without deriving any further negative ones), by traditional Horn clause semantics. The union of positive and negative conclusions is called the alternating xpoint partial model. The name "alternating" was chosen because the transformation runs in two passes; the first pass transforms an underestimate of the set of negative conclusions into an (intermediate) overestimate; the second pass transforms the overestimate into a new underestimate; the composition of the two passes is monotonic. The principal contributions of this work are (1) that the alternating fixpoint partial model is identical to the wellfounded partial model, and (2) that alternating xpoint logic is at least as expressive as xpoint logic on all structures. Also, on finite structures, fixpoint logic is as expressive as alternating fixpoint logic.
Higherorder logic programming
 HANDBOOK OF LOGIC IN AI AND LOGIC PROGRAMMING, VOLUME 5: LOGIC PROGRAMMING. OXFORD (1998
"... ..."