Results 1  10
of
28
Nominal techniques in Isabelle/HOL
 Proceedings of the 20th International Conference on Automated Deduction (CADE20
, 2005
"... Abstract. In this paper we define an inductive set that is bijective with the ffequated lambdaterms. Unlike deBruijn indices, however, our inductive definition includes names and reasoning about this definition is very similar to informal reasoning on paper. For this we provide a structural induc ..."
Abstract

Cited by 82 (13 self)
 Add to MetaCart
Abstract. In this paper we define an inductive set that is bijective with the ffequated lambdaterms. Unlike deBruijn indices, however, our inductive definition includes names and reasoning about this definition is very similar to informal reasoning on paper. For this we provide a structural induction principle that requires to prove the lambdacase for fresh binders only. The main technical novelty of this work is that it is compatible with the axiomofchoice (unlike earlier nominal logic work by Pitts et al); thus we were able to implement all results in Isabelle/HOL and use them to formalise the standard proofs for ChurchRosser and strongnormalisation. Keywords. Lambdacalculus, nominal logic, structural induction, theoremassistants.
A Logical Framework For Reasoning About Logical Specifications
, 2004
"... We present a new logic, Linc, which is designed to be used as a framework for specifying and reasoning about operational semantics. Linc is an extension of firstorder intuitionistic logic with a proof theoretic notion of definitions, induction and coinduction, and a new quantifier #. ..."
Abstract

Cited by 33 (12 self)
 Add to MetaCart
We present a new logic, Linc, which is designed to be used as a framework for specifying and reasoning about operational semantics. Linc is an extension of firstorder intuitionistic logic with a proof theoretic notion of definitions, induction and coinduction, and a new quantifier #.
Induction and coinduction in sequent calculus
 Postproceedings of TYPES 2003, number 3085 in LNCS
, 2003
"... Abstract. Proof search has been used to specify a wide range of computation systems. In order to build a framework for reasoning about such specifications, we make use of a sequent calculus involving induction and coinduction. These proof principles are based on a proof theoretic (rather than sett ..."
Abstract

Cited by 23 (8 self)
 Add to MetaCart
Abstract. Proof search has been used to specify a wide range of computation systems. In order to build a framework for reasoning about such specifications, we make use of a sequent calculus involving induction and coinduction. These proof principles are based on a proof theoretic (rather than settheoretic) notion of definition [13, 20, 25, 51]. Definitions are akin to (stratified) logic programs, where the left and right rules for defined atoms allow one to view theories as “closed ” or defining fixed points. The use of definitions makes it possible to reason intensionally about syntax, in particular enforcing free equality via unification. We add in a consistent way rules for pre and post fixed points, thus allowing the user to reason inductively and coinductively about properties of computational system making full use of higherorder abstract syntax. Consistency is guaranteed via cutelimination, where we give the first, to our knowledge, cutelimination procedure in the presence of general inductive and coinductive definitions. 1
A Definitional Approach to Primitive Recursion over Higher Order Abstract Syntax
 In Proceedings of the 2003 workshop on Mechanized
, 2003
"... Syntax S. J. Ambler (S.Ambler@mcs.le.ac.uk) R. L. Crole (R.Crole@mcs.le.ac.uk) & A. Momigliano (A.Momigliano@mcs.le.ac.uk) Department of Mathematics and Computer Science, University of Leicester, Leicester, LE1 7RH, U.K. ..."
Abstract

Cited by 22 (5 self)
 Add to MetaCart
Syntax S. J. Ambler (S.Ambler@mcs.le.ac.uk) R. L. Crole (R.Crole@mcs.le.ac.uk) & A. Momigliano (A.Momigliano@mcs.le.ac.uk) Department of Mathematics and Computer Science, University of Leicester, Leicester, LE1 7RH, U.K.
Focusing on binding and computation
 In IEEE Symposium on Logic in Computer Science
, 2008
"... Variable binding is a prevalent feature of the syntax and proof theory of many logical systems. In this paper, we define a programming language that provides intrinsic support for both representing and computing with binding. This language is extracted as the CurryHoward interpretation of a focused ..."
Abstract

Cited by 21 (6 self)
 Add to MetaCart
Variable binding is a prevalent feature of the syntax and proof theory of many logical systems. In this paper, we define a programming language that provides intrinsic support for both representing and computing with binding. This language is extracted as the CurryHoward interpretation of a focused sequent calculus with two kinds of implication, of opposite polarity. The representational arrow extends systems of definitional reflection with a notion of scoped inference rules, which are used to represent binding. On the other hand, the usual computational arrow classifies recursive functions defined by patternmatching. Unlike many previous approaches, both kinds of implication are connectives in a single logic, which serves as a rich logical framework capable of representing inference rules that mix binding and computation. 1
Parametric HigherOrder Abstract Syntax for Mechanized Semantics
, 2008
"... We present parametric higherorder abstract syntax (PHOAS), a new approach to formalizing the syntax of programming languages in computer proof assistants based on type theory. Like higherorder abstract syntax (HOAS), PHOAS uses the meta language’s binding constructs to represent the object language ..."
Abstract

Cited by 21 (2 self)
 Add to MetaCart
We present parametric higherorder abstract syntax (PHOAS), a new approach to formalizing the syntax of programming languages in computer proof assistants based on type theory. Like higherorder abstract syntax (HOAS), PHOAS uses the meta language’s binding constructs to represent the object language’s binding constructs. Unlike HOAS, PHOAS types are definable in generalpurpose type theories that support traditional functional programming, like Coq’s Calculus of Inductive Constructions. We walk through how Coq can be used to develop certified, executable program transformations over several staticallytyped functional programming languages formalized with PHOAS; that is, each transformation has a machinechecked proof of type preservation and semantic preservation. Our examples include CPS translation and closure conversion for simplytyped lambda calculus, CPS translation for System F, and translation from a language with MLstyle pattern matching to a simpler language with no variablearity binding constructs. By avoiding the syntactic hassle associated with firstorder representation techniques, we achieve a very high degree of proof automation.
A Universe of Binding and Computation
"... We construct a logical framework supporting datatypes that mix binding and computation, implemented as a universe in the dependently typed programming language Agda 2. We represent binding pronominally, using wellscoped de Bruijn indices, so that types can be used to reason about the scoping of var ..."
Abstract

Cited by 17 (5 self)
 Add to MetaCart
We construct a logical framework supporting datatypes that mix binding and computation, implemented as a universe in the dependently typed programming language Agda 2. We represent binding pronominally, using wellscoped de Bruijn indices, so that types can be used to reason about the scoping of variables. We equip our universe with datatypegeneric implementations of weakening, substitution, exchange, contraction, and subordinationbased strengthening, so that programmers need not reimplement these operations for each individual language they define. In our mixed, pronominal setting, weakening and substitution hold only under some conditions on types, but we show that these conditions can be discharged automatically in many cases. Finally, we program a variety of standard difficult test cases from the literature, such as normalizationbyevaluation for the untyped λcalculus, demonstrating that we can express detailed invariants about variable usage in a program’s type while still writing clean and clear code.
A Definitional TwoLevel Approach to Reasoning with HigherOrder Abstract Syntax
 Journal of Automated Reasoning
, 2010
"... Abstract. Combining higherorder abstract syntax and (co)induction in a logical framework is well known to be problematic. Previous work [ACM02] described the implementation of a tool called Hybrid, within Isabelle HOL, syntax, and reasoned about using tactical theorem proving and principles of (co ..."
Abstract

Cited by 14 (3 self)
 Add to MetaCart
Abstract. Combining higherorder abstract syntax and (co)induction in a logical framework is well known to be problematic. Previous work [ACM02] described the implementation of a tool called Hybrid, within Isabelle HOL, syntax, and reasoned about using tactical theorem proving and principles of (co)induction. Moreover, it is definitional, which guarantees consistency within a classical type theory. The idea is to have a de Bruijn representation of syntax, while offering tools for reasoning about them at the higher level. In this paper we describe how to use it in a multilevel reasoning fashion, similar in spirit to other metalogics such as Linc and Twelf. By explicitly referencing provability in a middle layer called a specification logic, we solve the problem of reasoning by (co)induction in the presence of nonstratifiable hypothetical judgments, which allow very elegant and succinct specifications of object logic inference rules. We first demonstrate the method on a simple example, formally proving type soundness (subject reduction) for a fragment of a pure functional language, using a minimal intuitionistic logic as the specification logic. We then prove an analogous result for a continuationmachine presentation of the operational semantics of the same language, encoded this time in an ordered linear logic that serves as the specification layer. This example demonstrates the ease with which we can incorporate new specification logics, and also illustrates a significantly
A Computational Approach to Reflective MetaReasoning about Languages with Bindings
 In MERLIN ’05: Proceedings of the 3rd ACM SIGPLAN workshop on Mechanized
, 2005
"... We present a foundation for a computational metatheory of languages with bindings implemented in a computeraided formal reasoning environment. Our theory provides the ability to reason abstractly about operators, languages, openended languages, classes of languages, etc. The theory is based on th ..."
Abstract

Cited by 12 (2 self)
 Add to MetaCart
We present a foundation for a computational metatheory of languages with bindings implemented in a computeraided formal reasoning environment. Our theory provides the ability to reason abstractly about operators, languages, openended languages, classes of languages, etc. The theory is based on the ideas of higherorder abstract syntax, with an appropriate induction principle parameterized over the language (i.e. a set of operators) being used. In our approach, both the bound and free variables are treated uniformly and this uniform treatment extends naturally to variablelength bindings. The implementation is reflective, namely there is a natural mapping between the metalanguage of the theoremprover and the object language of our theory. The object language substitution operation is mapped to the metalanguage substitution and does not need to be defined recursively. Our approach does not require designing a custom type theory; in this paper we describe the implementation of this foundational theory within a generalpurpose type theory. This work is fully implemented in the MetaPRL theorem prover, using the preexisting NuPRLlike MartinL ofstyle computational type theory. Based on this implementation, we lay out an outline for a framework for programming language experimentation and exploration as well as a general reflective reasoning framework. This paper also includes a short survey of the existing approaches to syntactic reflection. 1
Combining de Bruijn indices and higherorder abstract syntax in Coq
 Proceedings of TYPES 2006, volume 4502 of Lecture Notes in Computer Science
, 2006
"... Abstract. The use of higherorder abstract syntax is an important approach for the representation of binding constructs in encodings of languages and logics in a logical framework. Formal metareasoning about such object languages is a particular challenge. We present a mechanism for such reasoning, ..."
Abstract

Cited by 12 (2 self)
 Add to MetaCart
Abstract. The use of higherorder abstract syntax is an important approach for the representation of binding constructs in encodings of languages and logics in a logical framework. Formal metareasoning about such object languages is a particular challenge. We present a mechanism for such reasoning, formalized in Coq, inspired by the Hybrid tool in Isabelle. At the base level, we define a de Bruijn representation of terms with basic operations and a reasoning framework. At a higher level, we can represent languages and reason about them using higherorder syntax. We take advantage of Coq’s constructive logic by formulating many definitions as Coq programs. We illustrate the method on two examples: the untyped lambda calculus and quantified propositional logic. For each language, we can define recursion and induction principles that work directly on the higherorder syntax. 1