Results 1 
4 of
4
An Averagecase Analysis of the Gaussian Algorithm for Lattice Reduction
, 1996
"... .The Gaussian algorithm for lattice reduction in dimension 2 is analysed under its standard version. It is found that, when applied to random inputs in a continuous model, the complexity is constant on average, the probability distribution decays geometrically, and the dynamics is characterized by a ..."
Abstract

Cited by 40 (7 self)
 Add to MetaCart
.The Gaussian algorithm for lattice reduction in dimension 2 is analysed under its standard version. It is found that, when applied to random inputs in a continuous model, the complexity is constant on average, the probability distribution decays geometrically, and the dynamics is characterized by a conditional invariant measure. The proofs make use of connections between lattice reduction, continued fractions, continuants, and functional operators. Analysis in the discrete model and detailed numerical data are also presented. Une analyse en moyenne de l'algorithme de Gauss de r'eduction des r'eseaux R'esum'e. L'algorithme de r'eduction des r'eseaux en dimension 2 qui est du `a Gauss est analys'e sous sa forme dite standard. Il est 'etabli ici que, sous un mod`ele continu, sa complexit'e est constante en moyenne et que la distribution de probabilit'es associ'ee decroit g'eom'etriquement tandis que la dynamique est caract'eris'ee par une densit'e conditionnelle invariante. Les preuves f...
Dynamical Analysis of a Class of Euclidean Algorithms
"... We develop a general framework for the analysis of algorithms of a broad Euclidean type. The averagecase complexity of an algorithm is seen to be related to the analytic behaviour in the complex plane of the set of elementary transformations determined by the algorithm. The methods rely on properti ..."
Abstract

Cited by 17 (4 self)
 Add to MetaCart
We develop a general framework for the analysis of algorithms of a broad Euclidean type. The averagecase complexity of an algorithm is seen to be related to the analytic behaviour in the complex plane of the set of elementary transformations determined by the algorithm. The methods rely on properties of transfer operators suitably adapted from dynamical systems theory. As a consequence, we obtain precise averagecase analyses of algorithms for evaluating the Jacobi symbol of computational number theory fame, thereby solving conjectures of Bach and Shallit. These methods also provide a unifying framework for the analysis of an entire class of gcdlike algorithms together with new results regarding the probable behaviour of their cost functions. 1
Digits and Continuants in Euclidean Algorithms. Ergodic versus Tauberian Theorems
, 2000
"... We obtain new results regarding the precise average case analysis of the main quantities that intervene in algorithms of a broad Euclidean type. We develop a general framework for the analysis of such algorithms, where the averagecase complexity of an algorithm is related to the analytic behaviou ..."
Abstract

Cited by 14 (5 self)
 Add to MetaCart
We obtain new results regarding the precise average case analysis of the main quantities that intervene in algorithms of a broad Euclidean type. We develop a general framework for the analysis of such algorithms, where the averagecase complexity of an algorithm is related to the analytic behaviour in the complex plane of the set of elementary transformations determined by the algorithms. The methods rely on properties of transfer operators suitably adapted from dynamical systems theory and provide a unifying framework for the analysis of the main parameters digits and continuants that intervene in an entire class of gcdlike algorithms. We operate a general transfer from the continuous case (Continued Fraction Algorithms) to the discrete case (Euclidean Algorithms), where Ergodic Theorems are replaced by Tauberian Theorems.
Euclidean dynamics
 Discrete and Continuous Dynamical Systems
"... Abstract. We study a general class of Euclidean algorithms which compute the greatest common divisor [gcd], and we perform probabilistic analyses of their main parameters. We view an algorithm as a dynamical system restricted to rational inputs, and combine tools imported from dynamics, such as tran ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
Abstract. We study a general class of Euclidean algorithms which compute the greatest common divisor [gcd], and we perform probabilistic analyses of their main parameters. We view an algorithm as a dynamical system restricted to rational inputs, and combine tools imported from dynamics, such as transfer operators, with various tools of analytic combinatorics: generating functions, Dirichlet series, Tauberian theorems, Perron’s formula and quasipowers theorems. Such dynamical analyses can be used to perform the averagecase analysis of algorithms, but also (dynamical) analysis in distribution. 1. Introduction. Computing the Greatest Common Divisor [Gcd