Results 1 
3 of
3
Nuclear and Trace Ideals in Tensored *Categories
, 1998
"... We generalize the notion of nuclear maps from functional analysis by defining nuclear ideals in tensored categories. The motivation for this study came from attempts to generalize the structure of the category of relations to handle what might be called "probabilistic relations". The comp ..."
Abstract

Cited by 28 (9 self)
 Add to MetaCart
We generalize the notion of nuclear maps from functional analysis by defining nuclear ideals in tensored categories. The motivation for this study came from attempts to generalize the structure of the category of relations to handle what might be called "probabilistic relations". The compact closed structure associated with the category of relations does not generalize directly, instead one obtains nuclear ideals. Most tensored categories have a large class of morphisms which behave as if they were part of a compact closed category, i.e. they allow one to transfer variables between the domain and the codomain. We introduce the notion of nuclear ideals to analyze these classes of morphisms. In compact closed tensored categories, all morphisms are nuclear, and in the tensored category of Hilbert spaces, the nuclear morphisms are the HilbertSchmidt maps. We also introduce two new examples of tensored categories, in which integration plays the role of composition. In the first, mor...
Dagger categories and formal distributions
"... Summary. Monoidal dagger categories play a central role in the abstract quantum mechanics of Abramsky and Coecke. The authors show that a great deal of elementary quantum mechanics can be carried out in these categories; for example, the Born rule emerges naturally. In this paper, we construct a cat ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
(Show Context)
Summary. Monoidal dagger categories play a central role in the abstract quantum mechanics of Abramsky and Coecke. The authors show that a great deal of elementary quantum mechanics can be carried out in these categories; for example, the Born rule emerges naturally. In this paper, we construct a category of tame formal distributions with coefficients in a commutative associative algebra and show that it is a dagger category. This gives access to a broad new class of models, with the abstract scalars in the sense of Abramsky being the elements of the algebra. We will also consider a subcategory of local formal distributions, based on the ideas of Kac. Locality has been of fundamental significance in various formulations of quantum field theory. Thus our work may provide the possibility of extending the abstract framework to QFT. We also show that these categories of formal distributions are monoidal and contain a nuclear ideal, a weak form of adjunction appropriate for analyzing categories
Edinburgh, Scotland
, 1998
"... Most tensored \Lambdacategories have a large class of morphisms which behave as if they were part of a compact closed category, i.e. they allow one to transfer variables between the domain and the codomain. We introduce the notion of nuclear ideals to analyze these classes of morphisms. In compact ..."
Abstract
 Add to MetaCart
(Show Context)
Most tensored \Lambdacategories have a large class of morphisms which behave as if they were part of a compact closed category, i.e. they allow one to transfer variables between the domain and the codomain. We introduce the notion of nuclear ideals to analyze these classes of morphisms. In compact closed tensored \Lambdacategories, all morphisms are nuclear, and in the tensored \Lambdacategory of Hilbert spaces, the nuclear morphisms are the HilbertSchmidt maps. We also introduce two new examples of tensored \Lambdacategories, in which integration plays the role of composition. In the first, morphisms are a special class of distributions, which we call tame distributions. We also introduce a category of probabilistic relations.