Results 1 
4 of
4
TypeBased Termination of Recursive Definitions
, 2002
"... This article The purpose of this paper is to introduce b, a simply typed calculus that supports typebased recursive definitions. Although heavily inspired from previous work by Giménez (Giménez 1998) and closely related to recent work by Amadio and Coupet (Amadio and CoupetGrimal 1998), the techn ..."
Abstract

Cited by 53 (4 self)
 Add to MetaCart
This article The purpose of this paper is to introduce b, a simply typed calculus that supports typebased recursive definitions. Although heavily inspired from previous work by Giménez (Giménez 1998) and closely related to recent work by Amadio and Coupet (Amadio and CoupetGrimal 1998), the technical machinery behind our system puts a slightly different emphasis on the interpretation of types. More precisely, we formalize the notion of typebased termination using a restricted form of type dependency (a.k.a. indexed types), as popularized by (Xi and Pfenning 1998; Xi and Pfenning 1999). This leads to a simple and intuitive system which is robust under several extensions, such as mutually inductive datatypes and mutually recursive function definitions; however, such extensions are not treated in the paper
Recursive Families of Inductive Types
, 2000
"... Families of inductive types defined by recursion arise in the formalization of mathematical theories. An example is the family of term algebras on the type of signatures. Type theory does not allow the direct definition of such families. We state the problem abstractly by defining a notion, strong p ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
(Show Context)
Families of inductive types defined by recursion arise in the formalization of mathematical theories. An example is the family of term algebras on the type of signatures. Type theory does not allow the direct definition of such families. We state the problem abstractly by defining a notion, strong positivity, that characterizes these families. Then we investigate its solutions. First, we construct a model using wellorderings. Second, we use an extension...
Least and Greatest Fixed Points in Intuitionistic Natural Deduction
, 2002
"... This paper is a comparative study of a number of (intensionalsemantically distinct) least and greatest fixed point operators that naturaldeduction proof systems for intuitionistic logics can be extended with in a prooftheoretically defendable way. Eight pairs of such operators are analysed. The e ..."
Abstract
 Add to MetaCart
This paper is a comparative study of a number of (intensionalsemantically distinct) least and greatest fixed point operators that naturaldeduction proof systems for intuitionistic logics can be extended with in a prooftheoretically defendable way. Eight pairs of such operators are analysed. The exposition is centered around a cubeshaped classification where each node stands for an axiomatization of one pair of operators as logical constants by intended proof and reduction rules and each arc for a proof and reductionpreserving encoding of one pair in terms of another. The three dimensions of the cube reflect three orthogonal binary options: conventionalstyle vs. Mendlerstyle, basic (``[co]iterative'') vs. enhanced (``primitive[co]recursive''), simple vs. courseofvalue [co]induction. Some of the axiomatizations and encodings are wellknown; others, however, are novel; the classification into a cube is also new. The differences between the least fixed point operators considered are illustrated on the example of the corresponding natural number types.
1 and Veronique Viguie DonzeauGouge
"... A step towards the mechanization of partial ..."
(Show Context)