Results 1  10
of
179
Fast LTL to Büchi Automata Translation
, 2001
"... We present an algorithm to generate Büchi automata from LTL formulae. This algorithm generates a very weak alternating coBüchi automaton and then transforms it into a Büchi automaton, using a generalized B"uchi automaton as an intermediate step. Each automaton is simplified onthefly in ord ..."
Abstract

Cited by 110 (2 self)
 Add to MetaCart
We present an algorithm to generate Büchi automata from LTL formulae. This algorithm generates a very weak alternating coBüchi automaton and then transforms it into a Büchi automaton, using a generalized B"uchi automaton as an intermediate step. Each automaton is simplified onthefly in order to save memory and time. As usual we simplify the LTL formula before any treatment. We implemented this algorithm and compared it with Spin: the experiments show that our algorithm is much more efficient than Spin. The criteria of comparison are the size of the resulting automaton, the time of the computation and the memory used. Our implementation is available on the web at the following address: http://verif.liafa.jussieu.fr/ltl2ba
Model Checking of Safety Properties
, 1999
"... Of special interest in formal verification are safety properties, which assert that the system always stays within some allowed region. Proof rules for the verification of safety properties have been developed in the proofbased approach to verification, making verification of safety properties simp ..."
Abstract

Cited by 101 (16 self)
 Add to MetaCart
Of special interest in formal verification are safety properties, which assert that the system always stays within some allowed region. Proof rules for the verification of safety properties have been developed in the proofbased approach to verification, making verification of safety properties simpler than verification of general properties. In this paper we consider model checking of safety properties. A computation that violates a general linear property reaches a bad cycle, which witnesses the violation of the property. Accordingly, current methods and tools for model checking of linear properties are based on a search for bad cycles. A symbolic implementation of such a search involves the calculation of a nested fixedpoint expression over the system's state space, and is often impossible. Every computation that violates a safety property has a finite prefix along which the property is violated. We use this fact in order to base model checking of safety properties on a search for ...
The ForSpec Temporal Logic: A New Temporal PropertySpecification Language
, 2001
"... In this paper we describe the ForSpec Temporal Logic (FTL), the new temporal propertyspecification logic of ForSpec, Intel's new formal specification language. The key features of FTL are as follows: it is a linear temporal logic, based on Pnueli's LTL, it is based on a rich set of logical and a ..."
Abstract

Cited by 79 (22 self)
 Add to MetaCart
In this paper we describe the ForSpec Temporal Logic (FTL), the new temporal propertyspecification logic of ForSpec, Intel's new formal specification language. The key features of FTL are as follows: it is a linear temporal logic, based on Pnueli's LTL, it is based on a rich set of logical and arithmetical operations on bit vectors to describe state properties, it enables the user to define temporal connectives over time windows, it enables the user to define regular events, which are regular sequences of Boolean events, and then relate such events via special connectives, it enables the user to express properties about the past, and it includes constructs that enable the user to model multiple clock and reset signals, which is useful in the verification of hardware design.
Automatic Verification of Parameterized Synchronous Systems (Extended Abstract)
 In Proc. 8th Int'l. Conference on ComputerAided Verification (CAV
, 1996
"... ) E. Allen Emerson and Kedar S. Namjoshi Department of Computer Sciences, The University of Texas at Austin, U.S.A. Abstract. Systems with an arbitrary number of homogeneous processes occur in many applications. The Parameterized Model Checking Problem (PMCP) is to determine whether a temporal pro ..."
Abstract

Cited by 56 (6 self)
 Add to MetaCart
) E. Allen Emerson and Kedar S. Namjoshi Department of Computer Sciences, The University of Texas at Austin, U.S.A. Abstract. Systems with an arbitrary number of homogeneous processes occur in many applications. The Parameterized Model Checking Problem (PMCP) is to determine whether a temporal property is true of every size instance of the system. We consider systems formed by a synchronous parallel composition of a single control process with an arbitrary number of homogeneous user processes, and show that the PMCP is decidable for properties expressed in an indexed propositional temporal logic. While the problem is in general PSPACEcomplete, our initial experimental results indicate that the method is usable in practice. 1 Introduction Systems with an arbitrary number of homogeneous processes occur in many contexts, especially in protocols for data communication, cache coherence, and classical synchronization problems. Current verification work on such systems has focussed mostly...
Model Checking via Reachability Testing for Timed Automata
, 1997
"... In this paper we develop an approach to modelchecking for timed automata via reachability testing. As our specification formalism, we consider a densetime logic with clocks. This logic may be used to express safety and bounded liveness properties of realtime systems. We show how to automatically ..."
Abstract

Cited by 44 (13 self)
 Add to MetaCart
In this paper we develop an approach to modelchecking for timed automata via reachability testing. As our specification formalism, we consider a densetime logic with clocks. This logic may be used to express safety and bounded liveness properties of realtime systems. We show how to automatically synthesize, for every logical formula ', a socalled test automaton T' in such a way that checking whether a system S satisfies the property ' can be reduced to a reachability question over the system obtained by making T' interact with S.
Distributed Explicit Fair Cycle Detection (Set Based Approach)
"... The fair cycle detectiou problem is at the heart of both LTL and fair CTL model checking. This paper preseuts a new distributed scalable algorithm for explicit fair cycle detection. Our method combines the simplicity of the distributiou of explicitly preseuted data structure and the features of ..."
Abstract

Cited by 41 (12 self)
 Add to MetaCart
The fair cycle detectiou problem is at the heart of both LTL and fair CTL model checking. This paper preseuts a new distributed scalable algorithm for explicit fair cycle detection. Our method combines the simplicity of the distributiou of explicitly preseuted data structure and the features of symbolic algorithm allowing for an efficient parallelisa tion. If a fair cycle (i.e. couuterexample) is detected, theu the algorithm produces a cycle, which is in general shorter than that produced by depthfirst search based algorithms, Experimental results confirm that our approach outperforms that based ou a direct implementation of the best sequential algorithm.
Automated Temporal Reasoning about Reactive Systems
, 1996
"... . There is a growing need for reliable methods of designing correct reactive systems such as computer operating systems and air traffic control systems. It is widely agreed that certain formalisms such as temporal logic, when coupled with automated reasoning support, provide the most effective a ..."
Abstract

Cited by 39 (2 self)
 Add to MetaCart
. There is a growing need for reliable methods of designing correct reactive systems such as computer operating systems and air traffic control systems. It is widely agreed that certain formalisms such as temporal logic, when coupled with automated reasoning support, provide the most effective and reliable means of specifying and ensuring correct behavior of such systems. This paper discusses known complexity and expressiveness results for a number of such logics in common use and describes key technical tools for obtaining essentially optimal mechanical reasoning algorithms. However, the emphasis is on underlying intuitions and broad themes rather than technical intricacies. 1 Introduction There is a growing need for reliable methods of designing correct reactive systems. These systems are characterized by ongoing, typically nonterminating and highly nondeterministic behavior. Examples include operating systems, network protocols, and air traffic control systems. There is w...
Checking Finite Traces using Alternating Automata
, 2001
"... We present three algorithms to check at runtime whether a reactive program satisfies a temporal specification, expressed by a future lineartime temporal logic formula. The three methods are all based on alternating automata, but traverse the automaton in different ways: depthfirst, breadthfirst, ..."
Abstract

Cited by 37 (4 self)
 Add to MetaCart
We present three algorithms to check at runtime whether a reactive program satisfies a temporal specification, expressed by a future lineartime temporal logic formula. The three methods are all based on alternating automata, but traverse the automaton in different ways: depthfirst, breadthfirst, and backwards, respectively. All three methods have been implemented and experimental results are presented. We outline an extension to these algorithms that is applicable to ltl formulas containing both past and future operators.
Automatatheoretic approach to planning for temporally extended goals
 IN ECP
, 2000
"... We study an automatatheoretic approach to planning for temporally extended goals. Specifically, we devise techniques based on nonemptiness of Büchi automata on infinite words, to synthesize sequential and conditional plans in a generalized setting in which we have that: goals are general temporal ..."
Abstract

Cited by 37 (6 self)
 Add to MetaCart
We study an automatatheoretic approach to planning for temporally extended goals. Specifically, we devise techniques based on nonemptiness of Büchi automata on infinite words, to synthesize sequential and conditional plans in a generalized setting in which we have that: goals are general temporal properties of desired execution; dynamic systems are represented by finite transition systems; incomplete information on the initial situation is allowed; and states are only partially observable. We prove that the techniques proposed are optimal wrt the worst case complexity of the problem. Thanks to the scalability of the nonemptiness algorithms, the techniques presented here promise to be applicable to fairly large systems, notwithstanding the intrinsic complexity of the problem.
The Complexity of Temporal Logic Model Checking
, 2002
"... Temporal logic. Logical formalisms for reasoning about time and the timing of events appear in several fields: physics, philosophy, linguistics, etc. Not surprisingly, they also appear in computer science, a field where logic is ubiquitous. Here temporal logics are used in automated reasoning, in pl ..."
Abstract

Cited by 32 (0 self)
 Add to MetaCart
Temporal logic. Logical formalisms for reasoning about time and the timing of events appear in several fields: physics, philosophy, linguistics, etc. Not surprisingly, they also appear in computer science, a field where logic is ubiquitous. Here temporal logics are used in automated reasoning, in planning, in semantics of programming languages, in artificial intelligence, etc. There is one area of computer science where temporal logic has been unusually successful: the specification and verification of programs and systems, an area we shall just call programming for simplicity. In today's curricula, thousands of programmers first learn about temporal logic in a course on model checking!