Results 1  10
of
258
Compositional Model Checking
, 1999
"... We describe a method for reducing the complexity of temporal logic model checking in systems composed of many parallel processes. The goal is to check properties of the components of a system and then deduce global properties from these local properties. The main difficulty with this type of approac ..."
Abstract

Cited by 3218 (68 self)
 Add to MetaCart
(Show Context)
We describe a method for reducing the complexity of temporal logic model checking in systems composed of many parallel processes. The goal is to check properties of the components of a system and then deduce global properties from these local properties. The main difficulty with this type of approach is that local properties are often not preserved at the global level. We present a general framework for using additional interface processes to model the environment for a component. These interface processes are typically much simpler than the full environment of the component. By composing a component with its interface processes and then checking properties of this composition, we can guarantee that these properties will be preserved at the global level. We give two example compositional systems based on the logic CTL*.
Temporal and modal logic
 HANDBOOK OF THEORETICAL COMPUTER SCIENCE
, 1995
"... We give a comprehensive and unifying survey of the theoretical aspects of Temporal and modal logic. ..."
Abstract

Cited by 1300 (17 self)
 Add to MetaCart
(Show Context)
We give a comprehensive and unifying survey of the theoretical aspects of Temporal and modal logic.
Symbolic Model Checking without BDDs
, 1999
"... Symbolic Model Checking [3, 14] has proven to be a powerful technique for the verification of reactive systems. BDDs [2] have traditionally been used as a symbolic representation of the system. In this paper we show how boolean decision procedures, like Stalmarck's Method [16] or the Davis ..."
Abstract

Cited by 910 (74 self)
 Add to MetaCart
(Show Context)
Symbolic Model Checking [3, 14] has proven to be a powerful technique for the verification of reactive systems. BDDs [2] have traditionally been used as a symbolic representation of the system. In this paper we show how boolean decision procedures, like Stalmarck's Method [16] or the Davis & Putnam Procedure [7], can replace BDDs. This new technique avoids the space blow up of BDDs, generates counterexamples much faster, and sometimes speeds up the verification. In addition, it produces counterexamples of minimal length. We introduce a bounded model checking procedure for LTL which reduces model checking to propositional satisfiability. We show that bounded LTL model checking can be done without a tableau construction. We have implemented a model checker BMC, based on bounded model checking, and preliminary results are presented.
Model Checking for Programming Languages using VeriSoft
 IN PROCEEDINGS OF THE 24TH ACM SYMPOSIUM ON PRINCIPLES OF PROGRAMMING LANGUAGES
, 1997
"... Verification by statespace exploration, also often referred to as "model checking", is an effective method for analyzing the correctness of concurrent reactive systems (e.g., communication protocols). Unfortunately, existing modelchecking techniques are restricted to the verification of ..."
Abstract

Cited by 442 (13 self)
 Add to MetaCart
Verification by statespace exploration, also often referred to as "model checking", is an effective method for analyzing the correctness of concurrent reactive systems (e.g., communication protocols). Unfortunately, existing modelchecking techniques are restricted to the verification of properties of models, i.e., abstractions, of concurrent systems. In this paper, we discuss how model checking can be extended to deal directly with "actual" descriptions of concurrent systems, e.g., implementations of communication protocols written in programming languages such as C or C++. We then introduce a new search technique that is suitable for exploring the state spaces of such systems. This algorithm has been implemented in VeriSoft, a tool for systematically exploring the state spaces of systems composed of several concurrent processes executing arbitrary C code. As an example of application, we describe how VeriSoft successfully discovered an error in a 2500line C program controlling rob...
An AutomataTheoretic Approach to BranchingTime Model Checking
 JOURNAL OF THE ACM
, 1998
"... Translating linear temporal logic formulas to automata has proven to be an effective approach for implementing lineartime modelchecking, and for obtaining many extensions and improvements to this verification method. On the other hand, for branching temporal logic, automatatheoretic techniques ..."
Abstract

Cited by 360 (67 self)
 Add to MetaCart
Translating linear temporal logic formulas to automata has proven to be an effective approach for implementing lineartime modelchecking, and for obtaining many extensions and improvements to this verification method. On the other hand, for branching temporal logic, automatatheoretic techniques have long been thought to introduce an exponential penalty, making them essentially useless for modelchecking. Recently, Bernholtz and Grumberg have shown that this exponential penalty can be avoided, though they did not match the linear complexity of nonautomatatheoretic algorithms. In this paper we show that alternating tree automata are the key to a comprehensive automatatheoretic framework for branching temporal logics. Not only, as was shown by Muller et al., can they be used to obtain optimal decision procedures, but, as we show here, they also make it possible to derive optimal modelchecking algorithms. Moreover, the simple combinatorial structure that emerges from the a...
Model Checking and Modular Verification
 ACM Transactions on Programming Languages and Systems
, 1991
"... We describe a framework for compositional verification of finite state processes. The framework is based on two ideas: a subset of the logic CTL for which satisfaction is preserved under composition; and a preorder on structures which captures the relation between a component and a system containing ..."
Abstract

Cited by 310 (11 self)
 Add to MetaCart
(Show Context)
We describe a framework for compositional verification of finite state processes. The framework is based on two ideas: a subset of the logic CTL for which satisfaction is preserved under composition; and a preorder on structures which captures the relation between a component and a system containing the component. Satisfaction of a formula in the logic corresponds to being below a particular structure (a tableau for the formula) in the preorder. We show how to do assumeguarantee style reasoning within this framework. In addition, we demonstrate efficient methods for model checking in the logic and for checking the preorder in several special cases. We have implemented a system based on these methods, and we use it to give a compositional verification of a CPU controller. 1 Introduction Temporal logic model checking procedures are useful tools for the verification of finite state systems [3, 12, 20]. However, these procedures have traditionally suffered from the state explosion proble...
An automatatheoretic approach to linear temporal logic
 Logics for Concurrency: Structure versus Automata, volume 1043 of Lecture Notes in Computer Science
, 1996
"... Abstract. The automatatheoretic approach to linear temporal logic uses the theory of automata as a unifying paradigm for program specification, verification, and synthesis. Both programs and specifications are in essence descriptions of computations. These computations can be viewed as words over s ..."
Abstract

Cited by 294 (27 self)
 Add to MetaCart
(Show Context)
Abstract. The automatatheoretic approach to linear temporal logic uses the theory of automata as a unifying paradigm for program specification, verification, and synthesis. Both programs and specifications are in essence descriptions of computations. These computations can be viewed as words over some alphabet. Thus,programs and specificationscan be viewed as descriptions of languagesover some alphabet. The automatatheoretic perspective considers the relationships between programs and their specifications as relationships between languages.By translating programs and specifications to automata, questions about programs and their specifications can be reduced to questions about automata. More specifically, questions such as satisfiability of specifications and correctness of programs with respect to their specifications can be reduced to questions such as nonemptiness and containment of automata. Unlike classical automata theory, which focused on automata on finite words, the applications to program specification, verification, and synthesis, use automata on infinite words, since the computations in which we are interested are typically infinite. This paper provides an introduction to the theory of automata on infinite words and demonstrates its applications to program specification, verification, and synthesis. 1
Interpolation and SATbased model checking
, 2003
"... Abstract. We consider a fully SATbased method of unbounded symbolic model checking based on computing Craig interpolants. In benchmark studies using a set of large industrial circuit verification instances, this method is greatly more efficient than BDDbased symbolic model checking, and compares f ..."
Abstract

Cited by 283 (11 self)
 Add to MetaCart
(Show Context)
Abstract. We consider a fully SATbased method of unbounded symbolic model checking based on computing Craig interpolants. In benchmark studies using a set of large industrial circuit verification instances, this method is greatly more efficient than BDDbased symbolic model checking, and compares favorably to some recent SATbased model checking methods on positive instances. 1
AgentOriented Software Engineering
, 1999
"... Software and knowledge... In this article, we argue that intelligent agents and agentbased systems offer novel opportunities for developing effective tools and techniques. Following a discussion on the classic subject of what makes software complex, we introduce intelligent agents as software struc ..."
Abstract

Cited by 263 (19 self)
 Add to MetaCart
(Show Context)
Software and knowledge... In this article, we argue that intelligent agents and agentbased systems offer novel opportunities for developing effective tools and techniques. Following a discussion on the classic subject of what makes software complex, we introduce intelligent agents as software structures capable of making "rational decisions". Such rational decisionmakers are wellsuited to the construction of certain types of software, which mainstream software engineering has had little success with. We then go on to examine a number of prototype techniques proposed for engineering agent systems, including formal specification and verification methods for agent systems, and techniques for implementing agent specifications
NUSMV: a new symbolic model checker
 International Journal on Software Tools for Technology Transfer
, 2000
"... This paper describes a new symbolic model checker, called NUSMV, developed as part of a joint project between CMU and IRST. NUSMV is the result of the reengineering, reimplementation, and, to a limited extent, extension of the CMU SMV model checker. The core of this paper consists of a detailed de ..."
Abstract

Cited by 167 (22 self)
 Add to MetaCart
This paper describes a new symbolic model checker, called NUSMV, developed as part of a joint project between CMU and IRST. NUSMV is the result of the reengineering, reimplementation, and, to a limited extent, extension of the CMU SMV model checker. The core of this paper consists of a detailed description of the NUSMV functionalities, architecture, and implementation.