Results 1  10
of
389
Random Oracles are Practical: A Paradigm for Designing Efficient Protocols
, 1995
"... We argue that the random oracle model  where all parties have access to a public random oracle  provides a bridge between cryptographic theory and cryptographic practice. In the paradigm we suggest, a practical protocol P is produced by first devising and proving correct a protocol P R for the ..."
Abstract

Cited by 1333 (62 self)
 Add to MetaCart
We argue that the random oracle model  where all parties have access to a public random oracle  provides a bridge between cryptographic theory and cryptographic practice. In the paradigm we suggest, a practical protocol P is produced by first devising and proving correct a protocol P R for the random oracle model, and then replacing oracle accesses by the computation of an "appropriately chosen" function h. This paradigm yields protocols much more efficient than standard ones while retaining many of the advantages of provable security. We illustrate these gains for problems including encryption, signatures, and zeroknowledge proofs.
Universally composable security: A new paradigm for cryptographic protocols
, 2013
"... We present a general framework for representing cryptographic protocols and analyzing their security. The framework allows specifying the security requirements of practically any cryptographic task in a unified and systematic way. Furthermore, in this framework the security of protocols is preserved ..."
Abstract

Cited by 611 (34 self)
 Add to MetaCart
We present a general framework for representing cryptographic protocols and analyzing their security. The framework allows specifying the security requirements of practically any cryptographic task in a unified and systematic way. Furthermore, in this framework the security of protocols is preserved under a general protocol composition operation, called universal composition. The proposed framework with its securitypreserving composition operation allows for modular design and analysis of complex cryptographic protocols from relatively simple building blocks. Moreover, within this framework, protocols are guaranteed to maintain their security in any context, even in the presence of an unbounded number of arbitrary protocol instances that run concurrently in an adversarially controlled manner. This is a useful guarantee, that allows arguing about the security of cryptographic protocols in complex and unpredictable environments such as modern communication networks.
NonMalleable Cryptography
 SIAM Journal on Computing
, 2000
"... The notion of nonmalleable cryptography, an extension of semantically secure cryptography, is defined. Informally, in the context of encryption the additional requirement is that given the ciphertext it is impossible to generate a different ciphertext so that the respective plaintexts are related. ..."
Abstract

Cited by 447 (22 self)
 Add to MetaCart
The notion of nonmalleable cryptography, an extension of semantically secure cryptography, is defined. Informally, in the context of encryption the additional requirement is that given the ciphertext it is impossible to generate a different ciphertext so that the respective plaintexts are related. The same concept makes sense in the contexts of string commitment and zeroknowledge proofs of possession of knowledge. Nonmalleable schemes for each of these three problems are presented. The schemes do not assume a trusted center; a user need not know anything about the number or identity of other system users. Our cryptosystem is the first proven to be secure against a strong type of chosen ciphertext attack proposed by Rackoff and Simon, in which the attacker knows the ciphertext she wishes to break and can query the decryption oracle on any ciphertext other than the target.
Private Information Retrieval
, 1997
"... Publicly accessible databases are an indispensable resource for retrieving up to date information. But they also pose a significant risk to the privacy of the user, since a curious database operator can follow the user's queries and infer what the user is after. Indeed, in cases where the users ' i ..."
Abstract

Cited by 415 (11 self)
 Add to MetaCart
Publicly accessible databases are an indispensable resource for retrieving up to date information. But they also pose a significant risk to the privacy of the user, since a curious database operator can follow the user's queries and infer what the user is after. Indeed, in cases where the users ' intentions are to be kept secret, users are often cautious about accessing the database. It can be shown that when accessing a single database, to completely guarantee the privacy of the user, the whole database should be downloaded, namely n bits should be communicated (where n is the number of bits in the database). In this work, we investigate whether by replicating the database, more efficient solutions to the private retrieval problem can be obtained. We describe schemes that enable a user to access k replicated copies of a database (k * 2) and privately retrieve information stored in the database. This means that each individual database gets no information on the identity of the item retrieved by the user. Our schemes use the replication to gain substantial saving. In particular, we have ffl A two database scheme with communication complexity of O(n1=3). ffl A scheme for a constant number, k, of databases with communication complexity O(n1=k). ffl A scheme for 13 log2 n databases with polylogarithmic (in n) communication complexity.
Security and Composition of Multiparty Cryptographic Protocols
 JOURNAL OF CRYPTOLOGY
, 1998
"... We present general definitions of security for multiparty cryptographic protocols, with focus on the task of evaluating a probabilistic function of the parties' inputs. We show that, with respect to these definitions, security is preserved under a natural composition operation. The definitions f ..."
Abstract

Cited by 389 (18 self)
 Add to MetaCart
We present general definitions of security for multiparty cryptographic protocols, with focus on the task of evaluating a probabilistic function of the parties' inputs. We show that, with respect to these definitions, security is preserved under a natural composition operation. The definitions follow the general paradigm of known definitions; yet some substantial modifications and simplifications are introduced. The composition operation is the natural `subroutine substitution' operation, formalized by Micali and Rogaway. We consider several standard settings for multiparty protocols, including the cases of eavesdropping, Byzantine, nonadaptive and adaptive adversaries, as well as the informationtheoretic and the computational models. In particular, in the computational model we provide the first definition of security of protocols that is shown to be preserved under composition.
Universal OneWay Hash Functions and their Cryptographic Applications
, 1989
"... We define a Universal OneWay Hash Function family, a new primitive which enables the compression of elements in the function domain. The main property of this primitive is that given an element x in the domain, it is computationally hard to find a different domain element which collides with x. We ..."
Abstract

Cited by 313 (13 self)
 Add to MetaCart
We define a Universal OneWay Hash Function family, a new primitive which enables the compression of elements in the function domain. The main property of this primitive is that given an element x in the domain, it is computationally hard to find a different domain element which collides with x. We prove constructively that universal oneway hash functions exist if any 11 oneway functions exist. Among the various applications of the primitive is a OneWay based Secure Digital Signature Scheme which is existentially secure against adoptive attacks. Previously, all provably secure signature schemes were based on the stronger mathematical assumption that trapdoor oneway functions exist. Key words. cryptography, randomized algorithms AMS subject classifications. 68M10, 68Q20, 68Q22, 68R05, 68R10 Part of this work was done while the authors were at the IBM Almaden Research Center. The first author was supported in part by NSF grant CCR88 13632. A preliminary version of this work app...
Cryptographic Limitations on Learning Boolean Formulae and Finite Automata
 PROCEEDINGS OF THE TWENTYFIRST ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING
, 1989
"... In this paper we prove the intractability of learning several classes of Boolean functions in the distributionfree model (also called the Probably Approximately Correct or PAC model) of learning from examples. These results are representation independent, in that they hold regardless of the syntact ..."
Abstract

Cited by 311 (16 self)
 Add to MetaCart
In this paper we prove the intractability of learning several classes of Boolean functions in the distributionfree model (also called the Probably Approximately Correct or PAC model) of learning from examples. These results are representation independent, in that they hold regardless of the syntactic form in which the learner chooses to represent its hypotheses. Our methods reduce the problems of cracking a number of wellknown publickey cryptosystems to the learning problems. We prove that a polynomialtime learning algorithm for Boolean formulae, deterministic finite automata or constantdepth threshold circuits would have dramatic consequences for cryptography and number theory: in particular, such an algorithm could be used to break the RSA cryptosystem, factor Blum integers (composite numbers equivalent to 3 modulo 4), and detect quadratic residues. The results hold even if the learning algorithm is only required to obtain a slight advantage in prediction over random guessing. The techniques used demonstrate an interesting duality between learning and cryptography. We also apply our results to obtain strong intractability results for approximating a generalization of graph coloring.
Publickey Cryptosystems Provably Secure against Chosen Ciphertext Attacks
 In Proc. of the 22nd STOC
, 1995
"... We show how to construct a publickey cryptosystem (as originally defined by Diffie and Hellman) secure against chosen ciphertext attacks, given a publickey cryptosystem secure against passive eavesdropping and a noninteractive zeroknowledge proof system in the shared string model. No such secure ..."
Abstract

Cited by 249 (15 self)
 Add to MetaCart
We show how to construct a publickey cryptosystem (as originally defined by Diffie and Hellman) secure against chosen ciphertext attacks, given a publickey cryptosystem secure against passive eavesdropping and a noninteractive zeroknowledge proof system in the shared string model. No such secure cryptosystems were known before. Key words. cryptography, randomized algorithms AMS subject classifications. 68M10, 68Q20, 68Q22, 68R05, 68R10 A preliminary version of this paper appeared in the Proc. of the Twenty Second ACM Symposium of Theory of Computing. y Incumbent of the Morris and Rose Goldman Career Development Chair, Dept. of Applied Mathematics and Computer Science, Weizmann Institute of Science, Rehovot 76100, Israel. Work performed while at the IBM Almaden Research Center. Research supported by an Alon Fellowship and a grant from the Israel Science Foundation administered by the Israeli Academy of Sciences. Email: naor@wisdom.weizmann.ac.il. z IBM Research Division, T.J ...
Bit Commitment Using PseudoRandomness
 Journal of Cryptology
, 1991
"... We show how a pseudorandom generator can provide a bit commitment protocol. We also analyze the number of bits communicated when parties commit to many bits simultaneously, and show that the assumption of the existence of pseudorandom generators suffices to assure amortized O(1) bits of communicat ..."
Abstract

Cited by 228 (15 self)
 Add to MetaCart
We show how a pseudorandom generator can provide a bit commitment protocol. We also analyze the number of bits communicated when parties commit to many bits simultaneously, and show that the assumption of the existence of pseudorandom generators suffices to assure amortized O(1) bits of communication per bit commitment.