Results 11  20
of
560
Optimal Asymmetric Encryption – How to Encrypt with RSA
, 1995
"... Given an arbitrary kbit to kbit trapdoor permutation f and a hash function, we exhibit an encryption scheme for which (i) any string x of length slightly less than k bits can be encrypted as f(rx), where rx is a simple probabilistic encoding of x depending on the hash function; and (ii) the scheme ..."
Abstract

Cited by 204 (18 self)
 Add to MetaCart
Given an arbitrary kbit to kbit trapdoor permutation f and a hash function, we exhibit an encryption scheme for which (i) any string x of length slightly less than k bits can be encrypted as f(rx), where rx is a simple probabilistic encoding of x depending on the hash function; and (ii) the scheme can be proven semantically secure assuming the hash function is \ideal. " Moreover, a slightly enhanced scheme is shown to have the property that the adversary can create ciphertexts only of strings for which she \knows " the corresponding plaintextssuch ascheme is not only semantically secure but also nonmalleable and secure against chosenciphertext attack.
How to Timestamp a Digital Document
 Journal of Cryptology
, 1991
"... The prospect of a world in which all text, audio, picture, and video documents are in digital form on easily modifiable media raises the issue of how to certify when a document was created or last changed. The problem is to timestamp the data, not the medium. We propose computationally practical ..."
Abstract

Cited by 203 (3 self)
 Add to MetaCart
The prospect of a world in which all text, audio, picture, and video documents are in digital form on easily modifiable media raises the issue of how to certify when a document was created or last changed. The problem is to timestamp the data, not the medium. We propose computationally practical procedures for digital timestamping of such documents so that it is infeasible for a user either to backdate or to forwarddate his document, even with the collusion of a timestamping service. Our procedures maintain complete privacy of the documents themselves, and require no recordkeeping by the timestamping service. Appeared, with minor editorial changes, in Journal of Cryptology, Vol. 3, No. 2, pp. 99111, 1991. 0 Time's glory is to calm contending kings, To unmask falsehood, and bring truth to light, To stamp the seal of time in aged things, To wake the morn, and sentinel the night, To wrong the wronger till he render right. The Rape of Lucrece, l. 941 1 Introduction ...
ChosenCiphertext Security from IdentityBased Encryption. Adv
 in Cryptology — Eurocrypt 2004, LNCS
, 2004
"... We propose simple and efficient CCAsecure publickey encryption schemes (i.e., schemes secure against adaptive chosenciphertext attacks) based on any identitybased encryption (IBE) scheme. Our constructions have ramifications of both theoretical and practical interest. First, our schemes give a n ..."
Abstract

Cited by 199 (11 self)
 Add to MetaCart
We propose simple and efficient CCAsecure publickey encryption schemes (i.e., schemes secure against adaptive chosenciphertext attacks) based on any identitybased encryption (IBE) scheme. Our constructions have ramifications of both theoretical and practical interest. First, our schemes give a new paradigm for achieving CCAsecurity; this paradigm avoids “proofs of wellformedness ” that have been shown to underlie previous constructions. Second, instantiating our construction using known IBE constructions we obtain CCAsecure encryption schemes whose performance is competitive with the most efficient CCAsecure schemes to date. Our techniques extend naturally to give an efficient method for securing also IBE schemes (even hierarchical ones) against adaptive chosenciphertext attacks. Coupled with previous work, this gives the first efficient constructions of CCAsecure IBE schemes. 1
The Decision DiffieHellman Problem
, 1998
"... The Decision DiffieHellman assumption (ddh) is a gold mine. It enables one to construct efficient cryptographic systems with strong security properties. In this paper we survey the recent applications of DDH as well as known results regarding its security. We describe some open problems in this are ..."
Abstract

Cited by 198 (6 self)
 Add to MetaCart
The Decision DiffieHellman assumption (ddh) is a gold mine. It enables one to construct efficient cryptographic systems with strong security properties. In this paper we survey the recent applications of DDH as well as known results regarding its security. We describe some open problems in this area. 1 Introduction An important goal of cryptography is to pin down the exact complexity assumptions used by cryptographic protocols. Consider the DiffieHellman key exchange protocol [12]: Alice and Bob fix a finite cyclic group G and a generator g. They respectively pick random a; b 2 [1; jGj] and exchange g a ; g b . The secret key is g ab . To totally break the protocol a passive eavesdropper, Eve, must compute the DiffieHellman function defined as: dh g (g a ; g b ) = g ab . We say that the group G satisfies the Computational DiffieHellman assumption (cdh) if no efficient algorithm can compute the function dh g (x; y) in G. Precise definitions are given in the next sectio...
Design and Analysis of Practical PublicKey Encryption Schemes Secure against Adaptive Chosen Ciphertext Attack
 SIAM Journal on Computing
, 2001
"... A new public key encryption scheme, along with several variants, is proposed and analyzed. The scheme and its variants are quite practical, and are proved secure against adaptive chosen ciphertext attack under standard intractability assumptions. These appear to be the first publickey encryption sc ..."
Abstract

Cited by 189 (11 self)
 Add to MetaCart
A new public key encryption scheme, along with several variants, is proposed and analyzed. The scheme and its variants are quite practical, and are proved secure against adaptive chosen ciphertext attack under standard intractability assumptions. These appear to be the first publickey encryption schemes in the literature that are simultaneously practical and provably secure.
On the (im)possibility of obfuscating programs
 Lecture Notes in Computer Science
, 2001
"... Informally, an obfuscator O is an (efficient, probabilistic) “compiler ” that takes as input a program (or circuit) P and produces a new program O(P) that has the same functionality as P yet is “unintelligible ” in some sense. Obfuscators, if they exist, would have a wide variety of cryptographic an ..."
Abstract

Cited by 189 (10 self)
 Add to MetaCart
Informally, an obfuscator O is an (efficient, probabilistic) “compiler ” that takes as input a program (or circuit) P and produces a new program O(P) that has the same functionality as P yet is “unintelligible ” in some sense. Obfuscators, if they exist, would have a wide variety of cryptographic and complexitytheoretic applications, ranging from software protection to homomorphic encryption to complexitytheoretic analogues of Rice’s theorem. Most of these applications are based on an interpretation of the “unintelligibility ” condition in obfuscation as meaning that O(P) is a “virtual black box, ” in the sense that anything one can efficiently compute given O(P), one could also efficiently compute given oracle access to P. In this work, we initiate a theoretical investigation of obfuscation. Our main result is that, even under very weak formalizations of the above intuition, obfuscation is impossible. We prove this by constructing a family of efficient programs P that are unobfuscatable in the sense that (a) given any efficient program P ′ that computes the same function as a program P ∈ P, the “source code ” P can be efficiently reconstructed, yet (b) given oracle access to a (randomly selected) program P ∈ P, no efficient algorithm can reconstruct P (or even distinguish a certain bit in the code from random) except with negligible probability. We extend our impossibility result in a number of ways, including even obfuscators that (a) are not necessarily computable in polynomial time, (b) only approximately preserve the functionality, and (c) only need to work for very restricted models of computation (TC 0). We also rule out several potential applications of obfuscators, by constructing “unobfuscatable” signature schemes, encryption schemes, and pseudorandom function families.
Pseudorandom generators for spacebounded computation
 Combinatorica
, 1992
"... Pseudorandom generators are constructed which convert O(SlogR) truly random bits to R bits that appear random to any algorithm that runs in SPACE(S). In particular, any randomized polynomial time algorithm that runs in space S can be simulated using only O(Slogn) random bits. An application of these ..."
Abstract

Cited by 187 (12 self)
 Add to MetaCart
Pseudorandom generators are constructed which convert O(SlogR) truly random bits to R bits that appear random to any algorithm that runs in SPACE(S). In particular, any randomized polynomial time algorithm that runs in space S can be simulated using only O(Slogn) random bits. An application of these generators is an explicit construction of universal traversal sequences (for arbitrary graphs) of length n O(l~ The generators constructed are technically stronger than just appearing random to spacebounded machines, and have several other applications. In particular, applications are given for "deterministic amplification " (i.e. reducing the probability of error of randomized algorithms), as well as generalizations of it. 1.
How to Recycle Random Bits
, 1989
"... We show that modified versions of the linear congruential generator and the shift register generator are provably good for amplifying the correctness of a probabilistic algorithm. More precisely, if r random bits are needed for a BPP algorithm to be correct with probability at least 2=3, then O(r + ..."
Abstract

Cited by 183 (12 self)
 Add to MetaCart
We show that modified versions of the linear congruential generator and the shift register generator are provably good for amplifying the correctness of a probabilistic algorithm. More precisely, if r random bits are needed for a BPP algorithm to be correct with probability at least 2=3, then O(r + k 2 ) bits are needed to improve this probability to 1 \Gamma 2 \Gammak . We also present a different pseudorandom generator that is optimal, up to a constant factor, in this regard: it uses only O(r + k) bits to improve the probability to 1 \Gamma 2 \Gammak . This generator is based on random walks on expanders. Our results do not depend on any unproven assumptions. Next we show that our modified versions of the shift register and linear congruential generators can be used to sample from distributions using, in the limit, the informationtheoretic lower bound on random bits. 1. Introduction Randomness plays a vital role in almost all areas of computer science, both in theory and in...
Witness indistinguishable and witness hiding protocols
 in 22nd STOC
, 1990
"... A two party protocol in which party A uses one of several secret witnesses to an NP assertion is witness indistinguishable if party B cannot tell which witness A is actually using. The protocol is witness hiding ..."
Abstract

Cited by 167 (0 self)
 Add to MetaCart
A two party protocol in which party A uses one of several secret witnesses to an NP assertion is witness indistinguishable if party B cannot tell which witness A is actually using. The protocol is witness hiding
Software Protection and Simulation on Oblivious RAMs
, 1993
"... Software protection is one of the most important issues concerning computer practice. There exist many heuristics and adhoc methods for protection, but the problem as a whole has not received the theoretical treatment it deserves. In this paper we provide theoretical treatment of software protectio ..."
Abstract

Cited by 163 (13 self)
 Add to MetaCart
Software protection is one of the most important issues concerning computer practice. There exist many heuristics and adhoc methods for protection, but the problem as a whole has not received the theoretical treatment it deserves. In this paper we provide theoretical treatment of software protection. We reduce the problem of software protection to the problem of efficient simulation on oblivious RAM. A machine is oblivious if the sequence in which it accesses memory locations is equivalent for any two inputs with the same running time. For example, an oblivious Turing Machine is one for which the movement of the heads on the tapes is identical for each computation. (Thus, it is independent of the actual input.) What is the slowdown in the running time of any machine, if it is required to be oblivious? In 1979 Pippenger and Fischer showed how a twotape oblivious Turing Machine can simulate, online, a onetape Turing Machine, with a logarithmic slowdown in the running time. We s...