Results 1  10
of
430
Independent Component Analysis
 Neural Computing Surveys
, 2001
"... A common problem encountered in such disciplines as statistics, data analysis, signal processing, and neural network research, is nding a suitable representation of multivariate data. For computational and conceptual simplicity, such a representation is often sought as a linear transformation of the ..."
Abstract

Cited by 1492 (93 self)
 Add to MetaCart
A common problem encountered in such disciplines as statistics, data analysis, signal processing, and neural network research, is nding a suitable representation of multivariate data. For computational and conceptual simplicity, such a representation is often sought as a linear transformation of the original data. Wellknown linear transformation methods include, for example, principal component analysis, factor analysis, and projection pursuit. A recently developed linear transformation method is independent component analysis (ICA), in which the desired representation is the one that minimizes the statistical dependence of the components of the representation. Such a representation seems to capture the essential structure of the data in many applications. In this paper, we survey the existing theory and methods for ICA. 1
On the optimality of the simple Bayesian classifier under zeroone loss
 MACHINE LEARNING
, 1997
"... The simple Bayesian classifier is known to be optimal when attributes are independent given the class, but the question of whether other sufficient conditions for its optimality exist has so far not been explored. Empirical results showing that it performs surprisingly well in many domains containin ..."
Abstract

Cited by 601 (25 self)
 Add to MetaCart
The simple Bayesian classifier is known to be optimal when attributes are independent given the class, but the question of whether other sufficient conditions for its optimality exist has so far not been explored. Empirical results showing that it performs surprisingly well in many domains containing clear attribute dependences suggest that the answer to this question may be positive. This article shows that, although the Bayesian classifier’s probability estimates are only optimal under quadratic loss if the independence assumption holds, the classifier itself can be optimal under zeroone loss (misclassification rate) even when this assumption is violated by a wide margin. The region of quadraticloss optimality of the Bayesian classifier is in fact a secondorder infinitesimal fraction of the region of zeroone optimality. This implies that the Bayesian classifier has a much greater range of applicability than previously thought. For example, in this article it is shown to be optimal for learning conjunctions and disjunctions, even though they violate the independence assumption. Further, studies in artificial domains show that it will often outperform more powerful classifiers for common training set sizes and numbers of attributes, even if its bias is a priori much less appropriate to the domain. This article’s results also imply that detecting attribute dependence is not necessarily the best way to extend the Bayesian classifier, and this is also verified empirically.
Markov Logic Networks
 Machine Learning
, 2006
"... Abstract. We propose a simple approach to combining firstorder logic and probabilistic graphical models in a single representation. A Markov logic network (MLN) is a firstorder knowledge base with a weight attached to each formula (or clause). Together with a set of constants representing objects ..."
Abstract

Cited by 569 (34 self)
 Add to MetaCart
Abstract. We propose a simple approach to combining firstorder logic and probabilistic graphical models in a single representation. A Markov logic network (MLN) is a firstorder knowledge base with a weight attached to each formula (or clause). Together with a set of constants representing objects in the domain, it specifies a ground Markov network containing one feature for each possible grounding of a firstorder formula in the KB, with the corresponding weight. Inference in MLNs is performed by MCMC over the minimal subset of the ground network required for answering the query. Weights are efficiently learned from relational databases by iteratively optimizing a pseudolikelihood measure. Optionally, additional clauses are learned using inductive logic programming techniques. Experiments with a realworld database and knowledge base in a university domain illustrate the promise of this approach.
MulticastBased Inference of NetworkInternal Characteristics: Accuracy of Packet Loss Estimation
 IEEE Transactions on Information Theory
, 1998
"... We explore the use of endtoend multicast traffic as measurement probes to infer networkinternal characteristics. We have developed in an earlier paper [2] a Maximum Likelihood Estimator for packet loss rates on individual links based on losses observed by multicast receivers. This technique explo ..."
Abstract

Cited by 252 (31 self)
 Add to MetaCart
We explore the use of endtoend multicast traffic as measurement probes to infer networkinternal characteristics. We have developed in an earlier paper [2] a Maximum Likelihood Estimator for packet loss rates on individual links based on losses observed by multicast receivers. This technique exploits the inherent correlation between such observations to infer the performance of paths between branch points in the multicast tree spanning the probe source and its receivers. We evaluate through analysis and simulation the accuracy of our estimator under a variety of network conditions. In particular, we report on the error between inferred loss rates and actual loss rates as we vary the network topology, propagation delay, packet drop policy, background traffic mix, and probe traffic type. In all but one case, estimated losses and probe losses agree to within 2 percent on average. We feel this accuracy is enough to reliably identify congested links in a widearea internetwork. KeywordsInternet performance, endtoend measurements, Maximum Likelihood Estimator, tomography I.
Discovering Statistically Significant Biclusters in Gene Expression Data
 In Proceedings of ISMB 2002
, 2002
"... In gene expression data, a bicluster is a subset of the genes exhibiting consistent patterns over a subset of the conditions. We propose a new method to detect significant biclusters in large expression datasets. Our approach is graph theoretic coupled with statistical modelling of the data. Under p ..."
Abstract

Cited by 190 (4 self)
 Add to MetaCart
In gene expression data, a bicluster is a subset of the genes exhibiting consistent patterns over a subset of the conditions. We propose a new method to detect significant biclusters in large expression datasets. Our approach is graph theoretic coupled with statistical modelling of the data. Under plausible assumptions, our algorithm is polynomial and is guaranteed to find the most significant biclusters. We tested our method on a collection of yeast expression profiles and on a human cancer dataset. Cross validation results show high specificity in assigning function to genes based on their biclusters, and we are able to annotate in this way 196 uncharacterized yeast genes. We also demonstrate how the biclusters lead to detecting new concrete biological associations. In cancer data we are able to detect and relate finer tissue types than was previously possible. We also show that the method outperforms the biclustering algorithm of Cheng and Church (2000).
Mixed membership stochastic block models for relational data with application to proteinprotein interactions
 In Proceedings of the International Biometrics Society Annual Meeting
, 2006
"... We develop a model for examining data that consists of pairwise measurements, for example, presence or absence of links between pairs of objects. Examples include protein interactions and gene regulatory networks, collections of authorrecipient email, and social networks. Analyzing such data with p ..."
Abstract

Cited by 174 (30 self)
 Add to MetaCart
We develop a model for examining data that consists of pairwise measurements, for example, presence or absence of links between pairs of objects. Examples include protein interactions and gene regulatory networks, collections of authorrecipient email, and social networks. Analyzing such data with probabilistic models requires special assumptions, since the usual independence or exchangeability assumptions no longer hold. We introduce a class of latent variable models for pairwise measurements: mixed membership stochastic blockmodels. Models in this class combine a global model of dense patches of connectivity (blockmodel) and a local model to instantiate nodespecific variability in the connections (mixed membership). We develop a general variational inference algorithm for fast approximate posterior inference. We demonstrate the advantages of mixed membership stochastic blockmodels with applications to social networks and protein interaction networks.
Inferring Subnetworks from Perturbed Expression Profiles
, 2001
"... Genomewide expression profiles of genetic mutants provide a wide variety of measurements of cellular responses to perturbations. Typical analysis of such data identifies genes affected by perturbation and uses clustering to group genes of similar function. In this paper we discover a finer structur ..."
Abstract

Cited by 159 (12 self)
 Add to MetaCart
Genomewide expression profiles of genetic mutants provide a wide variety of measurements of cellular responses to perturbations. Typical analysis of such data identifies genes affected by perturbation and uses clustering to group genes of similar function. In this paper we discover a finer structure of interactions between genes, such as causality, mediation, activation, and inhibition by using a Bayesian network framework. We extend this framework to correctly handle perturbations, and to identify significant subnetworks of interacting genes. We apply this method to expression data of S. cerevisiae mutants and uncover a variety of structured metabolic, signaling and regulatory pathways. Contact: danab@cs.huji.ac.il
Active learning literature survey
, 2010
"... The key idea behind active learning is that a machine learning algorithm can achieve greater accuracy with fewer labeled training instances if it is allowed to choose the data from which is learns. An active learner may ask queries in the form of unlabeled instances to be labeled by an oracle (e.g., ..."
Abstract

Cited by 132 (1 self)
 Add to MetaCart
The key idea behind active learning is that a machine learning algorithm can achieve greater accuracy with fewer labeled training instances if it is allowed to choose the data from which is learns. An active learner may ask queries in the form of unlabeled instances to be labeled by an oracle (e.g., a human annotator). Active learning is wellmotivated in many modern machine learning problems, where unlabeled data may be abundant but labels are difficult, timeconsuming, or expensive to obtain. This report provides a general introduction to active learning and a survey of the literature. This includes a discussion of the scenarios in which queries can be formulated, and an overview of the query strategy frameworks proposed in the literature to date. An analysis of the empirical and theoretical evidence for active learning, a summary of several problem setting variants, and a discussion