Results 1 
2 of
2
Permuting Sparse Rectangular Matrices into BlockDiagonal Form
 SIAM Journal on Scientific Computing
, 2002
"... We investigate the problem of permuting a sparse rectangular matrix into block diagonal form. Block diagonal form of a matrix grants an inherent parallelism for solving the deriving problem, as recently investigated in the context of mathematical programming, LU factorization and QR factorization. W ..."
Abstract

Cited by 57 (19 self)
 Add to MetaCart
We investigate the problem of permuting a sparse rectangular matrix into block diagonal form. Block diagonal form of a matrix grants an inherent parallelism for solving the deriving problem, as recently investigated in the context of mathematical programming, LU factorization and QR factorization. We propose bipartite graph and hypergraph models to represent the nonzero structure of a matrix, which reduce the permutation problem to those of graph partitioning by vertex separator and hypergraph partitioning, respectively. Our experiments on a wide range of matrices, using stateoftheart graph and hypergraph partitioning tools MeTiS and PaToH, revealed that the proposed methods yield very effective solutions both in terms of solution quality and runtime.
Encapsulating Multiple CommunicationCost Metrics in Partitioning Sparse Rectangular Matrices for Parallel MatrixVector Multiplies
"... This paper addresses the problem of onedimensional partitioning of structurally unsymmetricsquare and rectangular sparse matrices for parallel matrixvector and matrixtransposevector multiplies. The objective is to minimize the communication cost while maintaining the balance on computational load ..."
Abstract

Cited by 36 (22 self)
 Add to MetaCart
This paper addresses the problem of onedimensional partitioning of structurally unsymmetricsquare and rectangular sparse matrices for parallel matrixvector and matrixtransposevector multiplies. The objective is to minimize the communication cost while maintaining the balance on computational loads of processors. Most of the existing partitioning models consider only the total message volume hoping that minimizing this communicationcost metric is likely to reduce other metrics. However, the total message latency (startup time) may be more important than the total message volume. Furthermore, the maximum message volume and latency handled by a single processor are also important metrics. We propose a twophase approach that encapsulates all these four communicationcost metrics. The objective in the first phase is to minimize the total message volume while maintainingthe computationalload balance. The objective in the second phase is to encapsulate the remaining three communicationcost metrics. We propose communicationhypergraph and partitioning models for the second phase. We then present several methods for partitioning communication hypergraphs. Experiments on a wide range of test matrices show that the proposed approach yields very effective partitioning results. A parallel implementation on a PC cluster verifies that the theoretical improvements shown by partitioning results hold in practice.