Results 1  10
of
17
Graphs, Causality, And Structural Equation Models
, 1998
"... Structural equation modeling (SEM) has dominated causal analysis in the social and behavioral sciences since the 1960s. Currently, many SEM practitioners are having difficulty articulating the causal content of SEM and are seeking foundational answers. ..."
Abstract

Cited by 64 (14 self)
 Add to MetaCart
Structural equation modeling (SEM) has dominated causal analysis in the social and behavioral sciences since the 1960s. Currently, many SEM practitioners are having difficulty articulating the causal content of SEM and are seeking foundational answers.
Using Path Diagrams as a Structural Equation Modelling Tool
, 1997
"... this paper, we will show how path diagrams can be used to solve a number of important problems in structural equation modelling. There are a number of problems associated with structural equation modeling. These problems include: ..."
Abstract

Cited by 36 (8 self)
 Add to MetaCart
this paper, we will show how path diagrams can be used to solve a number of important problems in structural equation modelling. There are a number of problems associated with structural equation modeling. These problems include:
Causal reasoning with ancestral graphs
, 2008
"... Causal reasoning is primarily concerned with what would happen to a system under external interventions. In particular, we are often interested in predicting the probability distribution of some random variables that would result if some other variables were forced to take certain values. One promin ..."
Abstract

Cited by 11 (0 self)
 Add to MetaCart
Causal reasoning is primarily concerned with what would happen to a system under external interventions. In particular, we are often interested in predicting the probability distribution of some random variables that would result if some other variables were forced to take certain values. One prominent approach to tackling this problem is based on causal Bayesian networks, using directed acyclic graphs as causal diagrams to relate postintervention probabilities to preintervention probabilities that are estimable from observational data. However, such causal diagrams are seldom fully testable given observational data. In consequence, many causal discovery algorithms based on datamining can only output an equivalence class of causal diagrams (rather than a single one). This paper is concerned with causal reasoning given an equivalence class of causal diagrams, represented by a (partial) ancestral graph. We present two main results. The first result extends Pearl (1995)’s celebrated docalculus to the context of ancestral graphs. In the second result, we focus on a key component of Pearl’s calculus—the property of invariance under interventions, and give stronger graphical conditions for this property than those implied by the first result. The second result also improves the earlier, similar results due to Spirtes et al. (1993).
Causal Inference and Reasoning in Causally Insufficient Systems
, 2006
"... The big question that motivates this dissertation is the following: under what conditions and to what extent can passive observations inform us of the structure of causal connections among a set of variables and of the potential outcome of an active intervention on some of the variables? The partic ..."
Abstract

Cited by 11 (2 self)
 Add to MetaCart
(Show Context)
The big question that motivates this dissertation is the following: under what conditions and to what extent can passive observations inform us of the structure of causal connections among a set of variables and of the potential outcome of an active intervention on some of the variables? The particular concern here revolves around the common kind of situations where the variables of interest, though measurable themselves, may suffer from confounding due to unobserved common causes. Relying on a graphical representation of causally insufficient systems called maximal ancestral graphs, and two wellknown principles widely discussed in the literature, the causal Markov and Faithfulness conditions, we show that the FCI algorithm, a sound inference procedure in the literature for inferring features of the unknown causal structure from facts of probabilistic independence and dependence, is, with some extra sound inference rules, also complete in the sense that any feature of the causal structure left undecided by the inference procedure is indeed underdetermined by facts of probabilistic independence and dependence. In addition, we consider the issue of quantitative reasoning about effects of local interventions with the FCIlearnable features of the unknown causal structure. We improve and generalize two important pieces of work in the literature about identifying intervention effects. We also provide some preliminary study of the testability of the
The Dimensionality of Mixed Ancestral Graphs
, 1997
"... this paper, MAGs have the following useful features: ..."
Abstract

Cited by 11 (5 self)
 Add to MetaCart
this paper, MAGs have the following useful features:
The Similarity of Causal Inference in Experimental and NonExperimental Studies *
"... For nearly as long as the word “correlation ” has been part of statistical parlance, students have been warned that correlation does not prove causation, and that only experimental studies, e.g., randomized clinical trials, can establish the existence of a causal relationship. Over the last few deca ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
For nearly as long as the word “correlation ” has been part of statistical parlance, students have been warned that correlation does not prove causation, and that only experimental studies, e.g., randomized clinical trials, can establish the existence of a causal relationship. Over the last few decades, somewhat of a consensus has emerged between statisticians, computer scientists, and philosophers on how to represent causal claims and connect them to probabilistic relations. One strand of this work studies the conditions under which evidence accumulated from nonexperimental (observational) studies can be used to infer a causal relationship. In this paper, I compare the typical conditions required to infer that one variable is a direct cause of another in observational and experimental studies. I argue that they are essentially the same. 2
Towards integrative causal analysis of heterogeneous data sets and studies
 Journal of Machine Learning Research
, 2012
"... We present methods able to predict the presence and strength of conditional and unconditional dependencies (correlations) between two variables Y and Z never jointly measured on the same samples, based on multiple data sets measuring a set of common variables. The algorithms are specializations of p ..."
Abstract

Cited by 4 (1 self)
 Add to MetaCart
We present methods able to predict the presence and strength of conditional and unconditional dependencies (correlations) between two variables Y and Z never jointly measured on the same samples, based on multiple data sets measuring a set of common variables. The algorithms are specializations of prior work on learning causal structures from overlapping variable sets. This problem has also been addressed in the field of statistical matching. The proposed methods are applied to a wide range of domains and are shown to accurately predict the presence of thousands of dependencies. Compared against prototypical statistical matching algorithms and within the scope of our experiments, the proposed algorithms make predictions that are better correlated with the sample estimates of the unknown parameters on test data; this is particularly the case when the number of commonly measured variables is low. The enabling idea behind the methods is to induce one or all causal models that are simultaneously consistent with (fit) all available data sets and prior knowledge and reason with them. This allows constraints stemming from causal assumptions (e.g., Causal Markov Condition, Faithfulness) to propagate. Several methods have been developed based on this idea, for which we propose
P.: A transformational characterization of markov equivalence for directed acyclic graphs with latent variables
 In: Proc. of the 21st Conference on Uncertainty in Artificial Intelligence (UAI
, 2005
"... The conditional independence relations present in a data set usually admit multiple causal explanations — typically represented by directed graphs — which are Markov equivalent in that they entail the same conditional independence relations among the observed variables. Markov equivalence between di ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
(Show Context)
The conditional independence relations present in a data set usually admit multiple causal explanations — typically represented by directed graphs — which are Markov equivalent in that they entail the same conditional independence relations among the observed variables. Markov equivalence between directed acyclic graphs (DAGs) has been characterized in various ways, each of which has been found useful for certain purposes. In particular, Chickering’s transformational characterization is useful in deriving properties shared by Markov equivalent DAGs, and, with certain generalization, is needed to justify a search procedure over Markov equivalence classes, known as the GES algorithm. Markov equivalence between DAGs with latent variables has also been characterized, in the spirit of Verma and Pearl (1990), via maximal ancestral graphs (MAGs). The latter can represent the observable conditional independence relations as well as some causal features of DAG models with latent variables. However, no characterization of Markov equivalent MAGs is yet available that is analogous to the transformational characterization for Markov equivalent DAGs. The main contribution of the current paper is to establish such a characterization for directed MAGs, which we expect will have similar uses as Chickering’s characterization does for DAGs. 1