Results 1 
5 of
5
Determinant maximization with linear matrix inequality constraints
 SIAM Journal on Matrix Analysis and Applications
, 1998
"... constraints ..."
Robust Solutions To Uncertain Semidefinite Programs
 SIAM J. OPTIMIZATION
, 1998
"... In this paper we consider semidefinite programs (SDPs) whose data depend on some unknown but bounded perturbation parameters. We seek "robust" solutions to such programs, that is, solutions which minimize the (worstcase) objective while satisfying the constraints for every possible value of paramet ..."
Abstract

Cited by 82 (8 self)
 Add to MetaCart
In this paper we consider semidefinite programs (SDPs) whose data depend on some unknown but bounded perturbation parameters. We seek "robust" solutions to such programs, that is, solutions which minimize the (worstcase) objective while satisfying the constraints for every possible value of parameters within the given bounds. Assuming the data matrices are rational functions of the perturbation parameters, we show how to formulate sufficient conditions for a robust solution to exist as SDPs. When the perturbation is "full," our conditions are necessary and sufficient. In this case, we provide sufficient conditions which guarantee that the robust solution is unique and continuous (Hölderstable) with respect to the unperturbed problem's data. The approach can thus be used to regularize illconditioned SDPs. We illustrate our results with examples taken from linear programming, maximum norm minimization, polynomial interpolation, and integer programming.
Robust Solutions To Uncertain Semidefinite Programs
, 1998
"... In this paper we consider semidenite programs (SDPs) whose data depends on some unknownbutbounded perturbation parameters. We seek "robust" solutions to such programs, that is, solutions which minimize the (worstcase) objective while satisfying the constraints for every possible values of paramet ..."
Abstract

Cited by 57 (2 self)
 Add to MetaCart
In this paper we consider semidenite programs (SDPs) whose data depends on some unknownbutbounded perturbation parameters. We seek "robust" solutions to such programs, that is, solutions which minimize the (worstcase) objective while satisfying the constraints for every possible values of parameters within the given bounds. Assuming the data matrices are rational functions of the perturbation parameters, we show how to formulate sufficient conditions for a robust solution to exist, as SDPs. When the perturbation is "full", our conditions are necessary and sufficient. In this case, we provide sufficient conditions which guarantee that the robust solution is unique, and continuous (Hölderstable) with respect to the unperturbed problems' data. The approach can thus be used to regularize illconditioned SDPs. We illustrate our results with examples taken from linear programming, maximum norm minimization, polynomial interpolation and integer programming.
A Computer Algebra Aid To Linear Systems Research
"... This article gives a brief introduction for systems theorists as to how one derives systems formulas using NCAlgebra. 1 Symbol manipulators as a yellow pad ..."
Abstract
 Add to MetaCart
This article gives a brief introduction for systems theorists as to how one derives systems formulas using NCAlgebra. 1 Symbol manipulators as a yellow pad
MAPA 3011A Special topics in approximation theory. 19971998: New difference calculus & orthogonal polynomials.
, 1997
"... Contents 1. Difference calculus through the ages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1. Arithmetic progressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2. S ..."
Abstract
 Add to MetaCart
Contents 1. Difference calculus through the ages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1. Arithmetic progressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2. Summation formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3. Classical difference operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.4. Geometric progressions and the first q \Gammadifference operator . . . . . . . . . . . . . . . . . . . . . . . . 2 2. The difference operator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1. Introducing D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .