Results 1  10
of
130
Simplification by cooperating decision procedures
 ACM Transactions on Programming Languages and Systems
, 1979
"... A method for combining decision procedures for several theories into a single decision procedure for their combination is described, and a simplifier based on this method is discussed. The simplifier finds a normal form for any expression formed from individual variables, the usual Boolean connectiv ..."
Abstract

Cited by 457 (1 self)
 Add to MetaCart
(Show Context)
A method for combining decision procedures for several theories into a single decision procedure for their combination is described, and a simplifier based on this method is discussed. The simplifier finds a normal form for any expression formed from individual variables, the usual Boolean connectives, the equality predicate =, the conditional function ifthenelse, the integers, the arithmetic functions and predicates +,, and _<, the Lisp functions and predicates car, cdr, cons, and atom, the functions store and select for storing into and selecting from arrays, and uninterpreted function symbols. If the expression is a theorem it is simplified to the constant true, so the simplifier can be used as a decision procedure for the quantifierfree theory containing these functions and predicates. The simplifier is currently used in the Stanford Pascal Verifier.
Lazy Satisfiability Modulo Theories
 JOURNAL ON SATISFIABILITY, BOOLEAN MODELING AND COMPUTATION 3 (2007) 141Â224
, 2007
"... Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfiability of a firstorder formula with respect to some decidable firstorder theory T (SMT (T)). These problems are typically not handled adequately by standard automated theorem provers. SMT is being recognized as increasingl ..."
Abstract

Cited by 181 (47 self)
 Add to MetaCart
(Show Context)
Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfiability of a firstorder formula with respect to some decidable firstorder theory T (SMT (T)). These problems are typically not handled adequately by standard automated theorem provers. SMT is being recognized as increasingly important due to its applications in many domains in different communities, in particular in formal verification. An amount of papers with novel and very efficient techniques for SMT has been published in the last years, and some very efficient SMT tools are now available. Typical SMT (T) problems require testing the satisfiability of formulas which are Boolean combinations of atomic propositions and atomic expressions in T, so that heavy Boolean reasoning must be efficiently combined with expressive theoryspecific reasoning. The dominating approach to SMT (T), called lazy approach, is based on the integration of a SAT solver and of a decision procedure able to handle sets of atomic constraints in T (Tsolver), handling respectively the Boolean and the theoryspecific components of reasoning. Unfortunately, neither the problem of building an efficient SMT solver, nor even that
Lower Bounds for Resolution and Cutting Plane Proofs and Monotone Computations
, 1997
"... We prove an exponential lower bound on the length of cutting plane proofs. The proof uses an extension of a lower bound for monotone circuits to circuits which compute with real numbers and use nondecreasing functions as gates. The latter result is of independent interest, since, in particular, i ..."
Abstract

Cited by 158 (6 self)
 Add to MetaCart
We prove an exponential lower bound on the length of cutting plane proofs. The proof uses an extension of a lower bound for monotone circuits to circuits which compute with real numbers and use nondecreasing functions as gates. The latter result is of independent interest, since, in particular, it implies an exponential lower bound for some arithmetic circuits.
Lazy abstraction with interpolants
 In Proc. CAV, LNCS 4144
, 2006
"... Abstract. We describe a model checker for infinitestate sequential programs, based on Craig interpolation and the lazy abstraction paradigm. On device driver benchmarks, we observe a speedup of up to two orders of magnitude relative to a similar tool using predicate abstraction. 1 ..."
Abstract

Cited by 123 (6 self)
 Add to MetaCart
(Show Context)
Abstract. We describe a model checker for infinitestate sequential programs, based on Craig interpolation and the lazy abstraction paradigm. On device driver benchmarks, we observe a speedup of up to two orders of magnitude relative to a similar tool using predicate abstraction. 1
Hybrid Logics: Characterization, Interpolation and Complexity
 Journal of Symbolic Logic
, 1999
"... Hybrid languages are expansions of propositional modal languages which can refer to (or even quantify over) worlds. The use of strong hybrid languages dates back to at least [Pri67], but recent work (for example [BS98, BT98a, BT99]) has focussed on a more constrained system called H(#; @). We sho ..."
Abstract

Cited by 109 (37 self)
 Add to MetaCart
(Show Context)
Hybrid languages are expansions of propositional modal languages which can refer to (or even quantify over) worlds. The use of strong hybrid languages dates back to at least [Pri67], but recent work (for example [BS98, BT98a, BT99]) has focussed on a more constrained system called H(#; @). We show in detail that H(#; @) is modally natural. We begin by studying its expressivity, and provide model theoretic characterizations (via a restricted notion of EhrenfeuchtFrasse game, and an enriched notion of bisimulation) and a syntactic characterization (in terms of bounded formulas). The key result to emerge is that H(#; @) corresponds to the fragment of rstorder logic which is invariant for generated submodels. We then show that H(#; @) enjoys (strong) interpolation, provide counterexamples for its nite variable fragments, and show that weak interpolation holds for the sublanguage H(@). Finally, we provide complexity results for H(@) and other fragments and variants, and sh...
Toward Logic Tailored for Computational Complexity
 COMPUTATION AND PROOF THEORY
, 1984
"... Whereas firstorder logic was developed to confront the infinite it is often used in computer science in such a way that infinite models are meaningless. We discuss the firstorder theory of finite structures and alternatives to firstorder logic, especially polynomial time logic. ..."
Abstract

Cited by 87 (7 self)
 Add to MetaCart
Whereas firstorder logic was developed to confront the infinite it is often used in computer science in such a way that infinite models are meaningless. We discuss the firstorder theory of finite structures and alternatives to firstorder logic, especially polynomial time logic.
A practical and complete approach to predicate refinement
 In Tools and Algorithms for the Construction and Analysis of Systems, LNCS 3920
, 2006
"... Abstract. Predicate abstraction is a method of synthesizing the strongest inductive invariant of a system expressible as a Boolean combination of a given set of atomic predicates. A predicate selection method can be said to be complete for a given theory if it is guaranteed to eventually find atomic ..."
Abstract

Cited by 87 (7 self)
 Add to MetaCart
(Show Context)
Abstract. Predicate abstraction is a method of synthesizing the strongest inductive invariant of a system expressible as a Boolean combination of a given set of atomic predicates. A predicate selection method can be said to be complete for a given theory if it is guaranteed to eventually find atomic predicates sufficient to prove a given property, when such exist. Current heuristics are incomplete, and often diverge on simple examples. We present a practical method of predicate selection that is complete in the above sense. The method is based on interpolation and uses a “split prover”, somewhat in the style of structurebased provers used in artificial intelligence. We show that it allows the verification of a variety of simple programs that cannot be verified by existing software model checkers. 1
PartitionBased Logical Reasoning for FirstOrder and Propositional Theories
 Artificial Intelligence
, 2000
"... In this paper we provide algorithms for reasoning with partitions of related logical axioms in propositional and firstorder logic (FOL). We also provide a greedy algorithm that automatically decomposes a set of logical axioms into partitions. Our motivation is twofold. First, we are concerned with ..."
Abstract

Cited by 61 (9 self)
 Add to MetaCart
(Show Context)
In this paper we provide algorithms for reasoning with partitions of related logical axioms in propositional and firstorder logic (FOL). We also provide a greedy algorithm that automatically decomposes a set of logical axioms into partitions. Our motivation is twofold. First, we are concerned with how to reason e#ectively with multiple knowledge bases that have overlap in content. Second, we are concerned with improving the e#ciency of reasoning over a set of logical axioms by partitioning the set with respect to some detectable structure, and reasoning over individual partitions. Many of the reasoning procedures we present are based on the idea of passing messages between partitions. We present algorithms for reasoning using forward messagepassing and using backward messagepassing with partitions of logical axioms. Associated with each partition is a reasoning procedure. We characterize a class of reasoning procedures that ensures completeness and soundness of our messagepassing ...
Lower Bounds to the Size of ConstantDepth Propositional Proofs
, 1994
"... 1 LK is a natural modification of Gentzen sequent calculus for propositional logic with connectives : and V ; W (both of unbounded arity). Then for every d 0 and n 2, there is a set T d n of depth d sequents of total size O(n 3+d ) which are refutable in LK by depth d + 1 proof of size exp ..."
Abstract

Cited by 56 (7 self)
 Add to MetaCart
1 LK is a natural modification of Gentzen sequent calculus for propositional logic with connectives : and V ; W (both of unbounded arity). Then for every d 0 and n 2, there is a set T d n of depth d sequents of total size O(n 3+d ) which are refutable in LK by depth d + 1 proof of size exp(O(log 2 n)) but such that every depth d refutation must have the size at least exp(n\Omega\Gamma21 ). The sets T d n express a weaker form of the pigeonhole principle. It is a fundamental problem of mathematical logic and complexity theory whether there exists a proof system for propositional logic in which every tautology has a short proof, where the length (equivalently the size) of a proof is measured essentially by the total number of symbols in it and short means polynomial in the length of the tautology. Equivalently one can ask whether for every theory T there is another theory S (both first order and reasonably axiomatized, e.g. by schemes) having the property that if a statement...
Applications of Craig Interpolants in Model Checking
 of Lecture Notes in Computer Science
, 2005
"... Abstract. A Craig interpolant for a mutually inconsistent pair of formulas (A,B) is a formula that is (1) implied by A, (2) inconsistent with B, and (3) expressed over the common variables of A and B. An interpolant can be efficiently derived from a refutation of A ∧ B, for certain theories and pr ..."
Abstract

Cited by 49 (0 self)
 Add to MetaCart
(Show Context)
Abstract. A Craig interpolant for a mutually inconsistent pair of formulas (A,B) is a formula that is (1) implied by A, (2) inconsistent with B, and (3) expressed over the common variables of A and B. An interpolant can be efficiently derived from a refutation of A ∧ B, for certain theories and proof systems. We will discuss a number of applications of this concept in finite and infinitestate model checking. 1