Results 1  10
of
14
Structured Proofs in Isar/HOL
 Types for Proofs and Programs (TYPES 2002), LNCS 2646
, 2003
"... Abstract. Isar is an extension of the theorem prover Isabelle with a language for writing humanreadable structured proofs. This paper is an introduction to the basic constructs of this language. 1 ..."
Abstract

Cited by 38 (7 self)
 Add to MetaCart
Abstract. Isar is an extension of the theorem prover Isabelle with a language for writing humanreadable structured proofs. This paper is an introduction to the basic constructs of this language. 1
Three Years of Experience with Sledgehammer, a Practical Link between Automatic and Interactive Theorem Provers
"... Sledgehammer is a highly successful subsystem of Isabelle/HOL that calls automatic theorem provers to assist with interactive proof construction. It requires no user configuration: it can be invoked with a single mouse gesture at any point in a proof. It automatically finds relevant lemmas from all ..."
Abstract

Cited by 19 (5 self)
 Add to MetaCart
Sledgehammer is a highly successful subsystem of Isabelle/HOL that calls automatic theorem provers to assist with interactive proof construction. It requires no user configuration: it can be invoked with a single mouse gesture at any point in a proof. It automatically finds relevant lemmas from all those currently available. An unusual aspect of its architecture is its use of unsound translations, coupled with its delivery of results as Isabelle/HOL proof scripts: its output cannot be trusted, but it does not need to be trusted. Sledgehammer works well with Isar structured proofs and allows beginners to prove challenging theorems. 1
Isabelle/Isar  a generic framework for humanreadable proof documents
 UNIVERSITY OF BIA̷LYSTOK
, 2007
"... ..."
Formalizing O Notation in Isabelle/HOL
, 2004
"... We describe a formalization of asymptotic O notation using the Isabelle/HOL proof assistant. ..."
Abstract

Cited by 12 (4 self)
 Add to MetaCart
We describe a formalization of asymptotic O notation using the Isabelle/HOL proof assistant.
A Comparison of the Mathematical Proof Languages Mizar and Isar
 Journal of Automated Reasoning
, 2002
"... The mathematical proof checker Mizar by Andrzej Trybulec uses a proof input language that is much more readable than the input languages of most other proof assistants. This system also di#ers in many other respects from most current systems. John Harrison has shown that one can have a Mizar mode on ..."
Abstract

Cited by 10 (3 self)
 Add to MetaCart
The mathematical proof checker Mizar by Andrzej Trybulec uses a proof input language that is much more readable than the input languages of most other proof assistants. This system also di#ers in many other respects from most current systems. John Harrison has shown that one can have a Mizar mode on top of a tactical prover, allowing one to combine a mathematical proof language with other styles of proof checking. Currently the only fully developed Mizar mode in this style is the Isar proof language for the Isabelle theorem prover. In fact the Isar language has become the o#cial input language to the Isabelle system, even though many users still use its lowlevel tactical part only.
A Comparison of Mizar and Isar
 J. Automated Reasoning
, 2002
"... Abstract. The mathematical proof checker Mizar by Andrzej Trybulec uses a proof input language that is much more readable than the input languages of most other proof assistants. This system also differs in many other respects from most current systems. John Harrison has shown that one can have a Mi ..."
Abstract

Cited by 8 (0 self)
 Add to MetaCart
Abstract. The mathematical proof checker Mizar by Andrzej Trybulec uses a proof input language that is much more readable than the input languages of most other proof assistants. This system also differs in many other respects from most current systems. John Harrison has shown that one can have a Mizar mode on top of a tactical prover, allowing one to combine a mathematical proof language with other styles of proof checking. Currently the only fully developed Mizar mode in this style is the Isar proof language for the Isabelle theorem prover. In fact the Isar language has become the official input language to the Isabelle system, even though many users still use its lowlevel tactical part only. In this paper we compare Mizar and Isar. A small example, Euclid’s proof of the existence of infinitely many primes, is shown in both systems. We also include slightly higherlevel views of formal proof sketches. Moreover a list of differences between Mizar and Isar is presented, highlighting the strengths of both systems from the perspective of endusers. Finally, we point out some key differences of the
KATML: An interactive theorem prover for Kleene Algebra with Tests
 University of Manchester
, 2003
"... Abstract. We describe an implementation of an interactive theorem prover for Kleene algebra with tests (KAT). The system is designed to reflect the natural style of reasoning with KAT that one finds in the literature. We illustrate its use with some examples. 1 ..."
Abstract

Cited by 8 (1 self)
 Add to MetaCart
Abstract. We describe an implementation of an interactive theorem prover for Kleene algebra with tests (KAT). The system is designed to reflect the natural style of reasoning with KAT that one finds in the literature. We illustrate its use with some examples. 1
Structured induction proofs in Isabelle/Isar
 MATHEMATICAL KNOWLEDGE MANAGEMENT (MKM 2006), LNAI
, 2006
"... Isabelle/Isar is a generic framework for humanreadable formal proof documents, based on higherorder natural deduction. The Isar proof language provides general principles that may be instantiated to particular objectlogics and applications. We discuss specific Isar language elements that support ..."
Abstract

Cited by 4 (1 self)
 Add to MetaCart
Isabelle/Isar is a generic framework for humanreadable formal proof documents, based on higherorder natural deduction. The Isar proof language provides general principles that may be instantiated to particular objectlogics and applications. We discuss specific Isar language elements that support complex induction patterns of practical importance. Despite the additional bookkeeping required for induction with local facts and parameters, definitions, simultaneous goals and multiple rules, the resulting Isar proof texts turn out wellstructured and readable. Our techniques can be applied to nonstandard variants of induction as well, such as coinduction and nominal induction. This demonstrates that Isar provides a viable platform for building domainspecific tools that support fullyformal mathematical proof composition.