Results 1 
2 of
2
How to Use Expert Advice
 JOURNAL OF THE ASSOCIATION FOR COMPUTING MACHINERY
, 1997
"... We analyze algorithms that predict a binary value by combining the predictions of several prediction strategies, called experts. Our analysis is for worstcase situations, i.e., we make no assumptions about the way the sequence of bits to be predicted is generated. We measure the performance of the ..."
Abstract

Cited by 317 (66 self)
 Add to MetaCart
We analyze algorithms that predict a binary value by combining the predictions of several prediction strategies, called experts. Our analysis is for worstcase situations, i.e., we make no assumptions about the way the sequence of bits to be predicted is generated. We measure the performance of the algorithm by the difference between the expected number of mistakes it makes on the bit sequence and the expected number of mistakes made by the best expert on this sequence, where the expectation is taken with respect to the randomization in the predictions. We show that the minimum achievable difference is on the order of the square root of the number of mistakes of the best expert, and we give efficient algorithms that achieve this. Our upper and lower bounds have matching leading constants in most cases. We then show howthis leads to certain kinds of pattern recognition/learning algorithms with performance bounds that improve on the best results currently known in this context. We also compare our analysis to the case in which log loss is used instead of the expected number of mistakes.
Predicting a Binary Sequence Almost as Well as the Optimal Biased Coin
, 1996
"... We apply the exponential weight algorithm, introduced and Littlestone and Warmuth [17] and by Vovk [24] to the problem of predicting a binary sequence almost as well as the best biased coin. We first show that for the case of the logarithmic loss, the derived algorithm is equivalent to the Bayes alg ..."
Abstract

Cited by 40 (5 self)
 Add to MetaCart
We apply the exponential weight algorithm, introduced and Littlestone and Warmuth [17] and by Vovk [24] to the problem of predicting a binary sequence almost as well as the best biased coin. We first show that for the case of the logarithmic loss, the derived algorithm is equivalent to the Bayes algorithm with Jeffrey's prior, that was studied by Xie and Barron under probabilistic assumptions [26]. We derive a uniform bound on the regret which holds for any sequence. We also show that if the empirical distribution of the sequence is bounded away from 0 and from 1, then, as the length of the sequence increases to infinity, the difference between this bound and a corresponding bound on the average case regret of the same algorithm (which is asymptotically optimal in that case) is only 1=2. We show that this gap of 1=2 is necessary by calculating the regret of the minmax optimal algorithm for this problem and showing that the asymptotic upper bound is tight. We also study the application...