Results 1  10
of
260
Universal coalgebra: a theory of systems
, 2000
"... In the semantics of programming, nite data types such as finite lists, have traditionally been modelled by initial algebras. Later final coalgebras were used in order to deal with in finite data types. Coalgebras, which are the dual of algebras, turned out to be suited, moreover, as models for certa ..."
Abstract

Cited by 382 (41 self)
 Add to MetaCart
In the semantics of programming, nite data types such as finite lists, have traditionally been modelled by initial algebras. Later final coalgebras were used in order to deal with in finite data types. Coalgebras, which are the dual of algebras, turned out to be suited, moreover, as models for certain types of automata and more generally, for (transition and dynamical) systems. An important property of initial algebras is that they satisfy the familiar principle of induction. Such a principle was missing for coalgebras until the work of Aczel (NonWellFounded sets, CSLI Leethre Notes, Vol. 14, center for the study of Languages and information, Stanford, 1988) on a theory of nonwellfounded sets, in which he introduced a proof principle nowadays called coinduction. It was formulated in terms of bisimulation, a notion originally stemming from the world of concurrent programming languages. Using the notion of coalgebra homomorphism, the definition of bisimulation on coalgebras can be shown to be formally dual to that of congruence on algebras. Thus, the three basic notions of universal algebra: algebra, homomorphism of algebras, and congruence, turn out to correspond to coalgebra, homomorphism of coalgebras, and bisimulation, respectively. In this paper, the latter are taken
Abstract behavior types: A foundation model for components and their composition
 SCIENCE OF COMPUTER PROGRAMMING
, 2003
"... ..."
(Show Context)
Bisimulation for Probabilistic Transition Systems: A Coalgebraic Approach
, 1998
"... . The notion of bisimulation as proposed by Larsen and Skou for discrete probabilistic transition systems is shown to coincide with a coalgebraic definition in the sense of Aczel and Mendler in terms of a set functor. This coalgebraic formulation makes it possible to generalize the concepts to a ..."
Abstract

Cited by 96 (15 self)
 Add to MetaCart
. The notion of bisimulation as proposed by Larsen and Skou for discrete probabilistic transition systems is shown to coincide with a coalgebraic definition in the sense of Aczel and Mendler in terms of a set functor. This coalgebraic formulation makes it possible to generalize the concepts to a continuous setting involving Borel probability measures. Under reasonable conditions, generalized probabilistic bisimilarity can be characterized categorically. Application of the final coalgebra paradigm then yields an internally fully abstract semantical domain with respect to probabilistic bisimulation. Keywords. Bisimulation, probabilistic transition system, coalgebra, ultrametric space, Borel measure, final coalgebra. 1 Introduction For discrete probabilistic transition systems the notion of probabilistic bisimilarity of Larsen and Skou [LS91] is regarded as the basic process equivalence. The definition was given for reactive systems. However, Van Glabbeek, Smolka and Steffen s...
Automata and coinduction (an exercise in coalgebra
 LNCS
, 1998
"... The classical theory of deterministic automata is presented in terms of the notions of homomorphism and bisimulation, which are the cornerstones of the theory of (universal) coalgebra. This leads to a transparent and uniform presentation of automata theory and yields some new insights, amongst which ..."
Abstract

Cited by 78 (18 self)
 Add to MetaCart
The classical theory of deterministic automata is presented in terms of the notions of homomorphism and bisimulation, which are the cornerstones of the theory of (universal) coalgebra. This leads to a transparent and uniform presentation of automata theory and yields some new insights, amongst which coinduction proof methods for language equality and language inclusion. At the same time, the present treatment of automata theory may serve as an introduction to coalgebra.
A Coinductive Calculus of Component Connectors
, 2002
"... Reo is a recently introduced channelbased coordination model, wherein complex coordinators, called connectors, are compositionally built out of simpler ones. Using a more liberal notion of a channel, Reo generalises existing dataflow networks. In this paper, we present a simple and transparent sema ..."
Abstract

Cited by 70 (29 self)
 Add to MetaCart
Reo is a recently introduced channelbased coordination model, wherein complex coordinators, called connectors, are compositionally built out of simpler ones. Using a more liberal notion of a channel, Reo generalises existing dataflow networks. In this paper, we present a simple and transparent semantical model for Reo, in which connectors are relations on timed data streams. Timed data streams constitute a characteristic of our model and consist of twin pairs of separate data and time streams. Furthermore, coinduction is our main reasoning principle and we use it to prove properties such as connector equivalence.
HigherOrder Pushdown Trees Are Easy
, 2002
"... We show that the monadic secondorder theory of an infinite tree recognized by a higherorder pushdown automaton of any level is decidable. We also show that trees recognized by pushdown automata of level n coincide with trees generated by safe higherorder grammars of level n. Our decidability resu ..."
Abstract

Cited by 62 (4 self)
 Add to MetaCart
We show that the monadic secondorder theory of an infinite tree recognized by a higherorder pushdown automaton of any level is decidable. We also show that trees recognized by pushdown automata of level n coincide with trees generated by safe higherorder grammars of level n. Our decidability result extends the result of Courcelle on algebraic (pushdown of level 1) trees and our own result on trees of level 2.
Observational logic
 IN ALGEBRAIC METHODOLOGY AND SOFTWARE TECHNOLOGY (AMAST'98
, 1999
"... We present an institution of observational logic suited for statebased systems specifications. The institution is based on the notion of an observational signature (which incorporates the declaration of a distinguished set of observers) and on observational algebras whose operations are required ..."
Abstract

Cited by 60 (10 self)
 Add to MetaCart
(Show Context)
We present an institution of observational logic suited for statebased systems specifications. The institution is based on the notion of an observational signature (which incorporates the declaration of a distinguished set of observers) and on observational algebras whose operations are required to be compatible with the indistinguishability relation determined by the given observers. In particular, we introduce a homomorphism concept for observational algebras which adequately expresses observational relationships between algebras. Then we consider a flexible notion of observational signature morphism which guarantees the satisfaction condition of institutions w.r.t. observational satisfaction of arbitrary firstorder sentences. From the proof theoretical point of view we construct a sound and complete proof system for the observational consequence relation. Then we consider structured observational specifications and we provide a sound and complete proof system for such specifications by using a general, institutionindependent result of [6].
Circular Coinductive Rewriting
 In Proceedings of Automated Software Engineering 2000
, 2000
"... Circular coinductive rewriting is a new method for proving behavioral properties, that combines behavioral rewriting with circular coinduction. This method is implemented in our new BOBJ behavioral specification and computation system, which is used in examples throughout this paper. These examples ..."
Abstract

Cited by 52 (11 self)
 Add to MetaCart
(Show Context)
Circular coinductive rewriting is a new method for proving behavioral properties, that combines behavioral rewriting with circular coinduction. This method is implemented in our new BOBJ behavioral specification and computation system, which is used in examples throughout this paper. These examples demonstrate the surprising power of circular coinductive rewriting. The paper also sketches the underlying hidden algebraic theory and briefly describes BOBJ and some of its algorithms.
A Hierarchy of Probabilistic System Types
, 2003
"... We study various notions of probabilistic bisimulation from a coalgebraic point of view, accumulating in a hierarchy of probabilistic system types. In general, a natural transformation between two Setfunctors straightforwardly gives rise to a transformation of coalgebras for the respective functors ..."
Abstract

Cited by 50 (7 self)
 Add to MetaCart
We study various notions of probabilistic bisimulation from a coalgebraic point of view, accumulating in a hierarchy of probabilistic system types. In general, a natural transformation between two Setfunctors straightforwardly gives rise to a transformation of coalgebras for the respective functors. This latter transformation preserves homomorphisms and thus bisimulations. For comparison of probabilistic system types we also need reflection of bisimulation. We build the hierarchy of probabilistic systems by exploiting the new result that the transformation also reflects bisimulation in case the natural transformation is componentwise injective and the first functor preserves weak pullbacks. Additionally, we illustrate the correspondence of concrete and coalgebraic bisimulation in the case of general Segalatype systems.