Results 1  10
of
24
Process and Term Tile Logic
, 1998
"... In a similar way as 2categories can be regarded as a special case of double categories, rewriting logic (in the unconditional case) can be embedded into the more general tile logic, where also sideeffects and rewriting synchronization are considered. Since rewriting logic is the semantic basis o ..."
Abstract

Cited by 34 (25 self)
 Add to MetaCart
In a similar way as 2categories can be regarded as a special case of double categories, rewriting logic (in the unconditional case) can be embedded into the more general tile logic, where also sideeffects and rewriting synchronization are considered. Since rewriting logic is the semantic basis of several language implementation efforts, it is useful to map tile logic back into rewriting logic in a conservative way, to obtain executable specifications of tile systems. We extend the results of earlier work by two of the authors, focusing on some interesting cases where the mathematical structures representing configurations (i.e., states) and effects (i.e., observable actions) are very similar, in the sense that they have in common some auxiliary structure (e.g., for tupling, projecting, etc.). In particular, we give in full detail the descriptions of two such cases where (net) processlike and usual term structures are employed. Corresponding to these two cases, we introduce two ca...
Mapping Tile Logic into Rewriting Logic
, 1998
"... . 1 Introduction Mapping Tile Logic into Rewriting Logic meseguer@csl.sri.com ugo@di.unipi.it Jos'e Meseguer and Ugo Montanari Rewriting logic [27, 28, 31] extends to concurrent systems with state changes the body of theory developed within the algebraic semantics approach. It can also be Re ..."
Abstract

Cited by 32 (23 self)
 Add to MetaCart
. 1 Introduction Mapping Tile Logic into Rewriting Logic meseguer@csl.sri.com ugo@di.unipi.it Jos'e Meseguer and Ugo Montanari Rewriting logic [27, 28, 31] extends to concurrent systems with state changes the body of theory developed within the algebraic semantics approach. It can also be Rewriting logic Tile logic membership equational logic 2 double 2VHcategories internal strategies uniform Metodi e Strumenti per la Progettazione e la Verifica di Sistemi Eterogenei Connessi mediante Reti di Comunicazione CONFER2 COORDINA Computer Science Laboratory, SRI International, Menlo Park, Dipartimento di Informatica, Universit`a di Pisa, extends to concurrent systems with state changes the body of theory developed within the algebraic semantics approach. It is both a foundational tool and the kernel language of several implementation efforts (Cafe, ELAN, Maude). extends (unconditional) rewriting logic since it takes into account state changes with side effects and synchronization. It is ...
Combining effects: sum and tensor
"... We seek a unified account of modularity for computational effects. We begin by reformulating Moggi’s monadic paradigm for modelling computational effects using the notion of enriched Lawvere theory, together with its relationship with strong monads; this emphasises the importance of the operations ..."
Abstract

Cited by 30 (4 self)
 Add to MetaCart
We seek a unified account of modularity for computational effects. We begin by reformulating Moggi’s monadic paradigm for modelling computational effects using the notion of enriched Lawvere theory, together with its relationship with strong monads; this emphasises the importance of the operations that produce the effects. Effects qua theories are then combined by appropriate bifunctors on the category of theories. We give a theory for the sum of computational effects, which in particular yields Moggi’s exceptions monad transformer and an interactive input/output monad transformer. We further give a theory of the commutative combination of effects, their tensor, which yields Moggi’s sideeffects monad transformer. Finally we give a theory of operation transformers, for redefining operations when adding new effects; we derive explicit forms for the operation transformers associated to the above monad transformers.
Combining Computational Effects: Commutativity and Sum
, 2002
"... We begin to develop a unified account of modularity for computational effects. We use the notion of enriched Lawvere theory, together with its relationship with strong monads, to reformulate Moggi's paradigm for modelling computational effects; we emphasise the importance here of the operations ..."
Abstract

Cited by 19 (4 self)
 Add to MetaCart
We begin to develop a unified account of modularity for computational effects. We use the notion of enriched Lawvere theory, together with its relationship with strong monads, to reformulate Moggi's paradigm for modelling computational effects; we emphasise the importance here of the operations that induce computational effects. Effects qua theories are then combined by appropriate bifunctors (on the category of theories). We give a theory of the commutative combination of effects, which in particular yields Moggi's sideeffects monad transformer (an application is the combination of sideeffects with nondeterminism). And we give a theory...
The Category Theoretic Understanding of Universal Algebra: Lawvere Theories and Monads
, 2007
"... Lawvere theories and monads have been the two main category theoretic formulations of universal algebra, Lawvere theories arising in 1963 and the connection with monads being established a few years later. Monads, although mathematically the less direct and less malleable formulation, rapidly gained ..."
Abstract

Cited by 14 (0 self)
 Add to MetaCart
Lawvere theories and monads have been the two main category theoretic formulations of universal algebra, Lawvere theories arising in 1963 and the connection with monads being established a few years later. Monads, although mathematically the less direct and less malleable formulation, rapidly gained precedence. A generation later, the definition of monad began to appear extensively in theoretical computer science in order to model computational effects, without reference to universal algebra. But since then, the relevance of universal algebra to computational effects has been recognised, leading to renewed prominence of the notion of Lawvere theory, now in a computational setting. This development has formed a major part of Gordon Plotkin’s mature work, and we study its history here, in particular asking why Lawvere theories were eclipsed by monads in the 1960’s, and how the renewed interest in them in a computer science setting might develop in future.
Countable Lawvere Theories and Computational Effects
, 2006
"... Lawvere theories have been one of the two main category theoretic formulations of universal algebra, the other being monads. Monads have appeared extensively over the past fifteen years in the theoretical computer science literature, specifically in connection with computational effects, but Lawvere ..."
Abstract

Cited by 10 (2 self)
 Add to MetaCart
Lawvere theories have been one of the two main category theoretic formulations of universal algebra, the other being monads. Monads have appeared extensively over the past fifteen years in the theoretical computer science literature, specifically in connection with computational effects, but Lawvere theories have not. So we define the notion of (countable) Lawvere theory and give a precise statement of its relationship with the notion of monad on the category Set. We illustrate with examples arising from the study of computational effects, explaining how the notion of Lawvere theory keeps one closer to computational practice. We then describe constructions that one can make with Lawvere theories, notably sum, tensor, and distributive tensor, reflecting the ways in which the various computational effects are usually combined, thus giving denotational semantics for the combinations.
Geometric and higher order logic in terms of abstract Stone duality
 THEORY AND APPLICATIONS OF CATEGORIES
, 2000
"... The contravariant powerset, and its generalisations ΣX to the lattices of open subsets of a locally compact topological space and of recursively enumerable subsets of numbers, satisfy the Euclidean principle that φ ∧ F (φ) =φ ∧ F (⊤). Conversely, when the adjunction Σ (−) ⊣ Σ (−) is monadic, this ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
The contravariant powerset, and its generalisations ΣX to the lattices of open subsets of a locally compact topological space and of recursively enumerable subsets of numbers, satisfy the Euclidean principle that φ ∧ F (φ) =φ ∧ F (⊤). Conversely, when the adjunction Σ (−) ⊣ Σ (−) is monadic, this equation implies that Σ classifies some class of monos, and the Frobenius law ∃x.(φ(x) ∧ ψ) =(∃x.φ(x)) ∧ ψ) for the existential quantifier. In topology, the lattice duals of these equations also hold, and are related to the Phoa principle in synthetic domain theory. The natural definitions of discrete and Hausdorff spaces correspond to equality and inequality, whilst the quantifiers considered as adjoints characterise open (or, as we call them, overt) and compact spaces. Our treatment of overt discrete spaces and open maps is precisely dual to that of compact Hausdorff spaces and proper maps. The category of overt discrete spaces forms a pretopos and the paper concludes with a converse of Paré’s theorem (that the contravariant powerset functor is monadic) that characterises elementary toposes by means of the monadic and Euclidean properties together with all quantifiers, making no reference to subsets.
Noncommutative geometry through monoidal categories I
"... Abstract. After introducing a noncommutative counterpart of commutative algebraic geometry based on monoidal categories of quasicoherent sheaves we show that various constructions in noncommutative geometry (e.g. Morita equivalences, HopfGalois extensions) can be given geometric meaning extending ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
Abstract. After introducing a noncommutative counterpart of commutative algebraic geometry based on monoidal categories of quasicoherent sheaves we show that various constructions in noncommutative geometry (e.g. Morita equivalences, HopfGalois extensions) can be given geometric meaning extending their geometric interpretations in the commutative case. On the other hand, we show that some constructions in commutative geometry (e.g. faithfully flat descent theory, principal fibrations, equivariant and infinitesimal geometry) can be interpreted as noncommutative geometric constructions applied to commutative objects. For such generalized geometry we define global invariants constructing cyclic objects from which we derive Hochschild, cyclic and periodic cyclic homology (with coefficients) in the standard way. Contents
Morita equivalence of almostprimal clones
 J. Pure Appl. Algebra
, 1996
"... Abstract. Two algebraic structures A and B are called categorically equivalent if there is a functor from the variety generated by A to the variety generated by B, carrying A to B, that is an equivalence of the varieties when viewed as categories. We characterize those algebras categorically equival ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
Abstract. Two algebraic structures A and B are called categorically equivalent if there is a functor from the variety generated by A to the variety generated by B, carrying A to B, that is an equivalence of the varieties when viewed as categories. We characterize those algebras categorically equivalent to A when A is an algebra whose set of term operations is as large as possible subject to constraints placed on it by the subalgebra or congruence lattice of A, or the automorphism group of A. Two categories C and D are said to be equivalent if there are functors F: C → D and G: D → C such that the composite functors F ◦ G and G ◦ F are naturally isomorphic to the identities on D and C respectively. It is natural to ask whether some property of an object, morphism or an entire category is preserved under every equivalence of categories. Moreover, given an object (or morphism, or category), one might wish to characterize the class of objects obtained by applying all equivalences to that starting object. Any variety of algebras (that is, a class of algebras closed under the formation of subalgebra, product, and homomorphic image) forms a category, in which the morphisms
Sketches: Outline with references
, 1993
"... This package contains the original article, written in December, 1993, and this addendum, ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
This package contains the original article, written in December, 1993, and this addendum,