Results 1  10
of
227
A column approximate minimum degree ordering algorithm
, 2000
"... Sparse Gaussian elimination with partial pivoting computes the factorization PAQ = LU of a sparse matrix A, where the row ordering P is selected during factorization using standard partial pivoting with row interchanges. The goal is to select a column preordering, Q, based solely on the nonzero patt ..."
Abstract

Cited by 308 (53 self)
 Add to MetaCart
Sparse Gaussian elimination with partial pivoting computes the factorization PAQ = LU of a sparse matrix A, where the row ordering P is selected during factorization using standard partial pivoting with row interchanges. The goal is to select a column preordering, Q, based solely on the nonzero pattern of A such that the factorization remains as sparse as possible, regardless of the subsequent choice of P. The choice of Q can have a dramatic impact on the number of nonzeros in L and U. One scheme for determining a good column ordering for A is to compute a symmetric ordering that reduces fillin in the Cholesky factorization of ATA. This approach, which requires the sparsity structure of ATA to be computed, can be expensive both in
Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time
, 2003
"... We introduce the smoothed analysis of algorithms, which continuously interpolates between the worstcase and averagecase analyses of algorithms. In smoothed analysis, we measure the maximum over inputs of the expected performance of an algorithm under small random perturbations of that input. We me ..."
Abstract

Cited by 170 (14 self)
 Add to MetaCart
We introduce the smoothed analysis of algorithms, which continuously interpolates between the worstcase and averagecase analyses of algorithms. In smoothed analysis, we measure the maximum over inputs of the expected performance of an algorithm under small random perturbations of that input. We measure this performance in terms of both the input size and the magnitude of the perturbations. We show that the simplex algorithm has smoothed complexity polynomial in the input size and the standard deviation of
Reasoning about Systems with Many Processes
 Journal of the ACM
, 1992
"... Abstract. Methods are given for automatically verifying temporal properties of concurrent systems containing an arbitrary number of finitestate processes that communicate using CCS actions. Two models of systems are considered. Systems in the first model consist of a unique contro [ process and an ..."
Abstract

Cited by 160 (2 self)
 Add to MetaCart
(Show Context)
Abstract. Methods are given for automatically verifying temporal properties of concurrent systems containing an arbitrary number of finitestate processes that communicate using CCS actions. Two models of systems are considered. Systems in the first model consist of a unique contro [ process and an arbitrary number of user processes with identical detlnitions, For this model, a decision procedure to check whether all the executions of a process satisfy a given specification is presented. This algorithm runs in time double exponential mthe sizes of the control andthe user process definitions. It is also proven that it is decidable whether all the fair executions of a process satisfy a gwen specification. The second model is a special case of the first. In this model, all the processes have identical definitions. For this model, an efficient decision procedure is presented that checks if every execution of a process satisfies a given temporal logic specification. This algorithm runs in time polynomial inthesize of the process definition. Itisshown howtoverify certamglobal properties such as mutual exchrslon and absence of deadlocks. Finally, it is shown how these decision procedures can beusedto reason about certain systems with a communication network,
The virtual customer
, 2002
"... Communication and information technologies are adding new capabilities for rapid and inexpensive customer input to all stages of the product development (PD) process. In this article we review six webbased methods of customer input as examples of the improved Internet capabilities of communication, ..."
Abstract

Cited by 154 (21 self)
 Add to MetaCart
Communication and information technologies are adding new capabilities for rapid and inexpensive customer input to all stages of the product development (PD) process. In this article we review six webbased methods of customer input as examples of the improved Internet capabilities of communication, conceptualization, and computation. For each method we give examples of userinterfaces, initial applications, and validity tests. We critique the applicability of the methods for use in the various stages of PD and discuss how they complement existing methods. For example, during the fuzzy front end of PD the information pump enables customers to interact with each other in a webbased game that provides incentives for truthtelling and thinking hard, thus providing new ways for customers to verbalize the product features that are important to them. Fast polyhedral adaptive conjoint estimation enables PD teams to screen larger numbers of product features inexpensively to identify and measure the importance of the most promising features for further development. Meanwhile, interactive webbased conjoint analysis interfaces are moving this proven set of methods to the web while exploiting new capabilities to present products, features, product use, and marketing elements in streaming multimedia representations. User design exploits the interactivity of the web to enable users to design their own virtual products thus enabling the PD team to understand complex feature interactions and enabling customers to learn their own preferences for new products. These methods can be valuable for identifying opportunities, improving the design and engineering of products, and testing ideas and concepts much earlier in the process when less time and money is at risk. As products move toward pretesting and testing, virtual concept testing on the web enables PD teams to test concepts without actually building
On the complexity of solving Markov decision problems
 IN PROC. OF THE ELEVENTH INTERNATIONAL CONFERENCE ON UNCERTAINTY IN ARTIFICIAL INTELLIGENCE
, 1995
"... Markov decision problems (MDPs) provide the foundations for a number of problems of interest to AI researchers studying automated planning and reinforcement learning. In this paper, we summarize results regarding the complexity of solving MDPs and the running time of MDP solution algorithms. We argu ..."
Abstract

Cited by 145 (11 self)
 Add to MetaCart
Markov decision problems (MDPs) provide the foundations for a number of problems of interest to AI researchers studying automated planning and reinforcement learning. In this paper, we summarize results regarding the complexity of solving MDPs and the running time of MDP solution algorithms. We argue that, although MDPs can be solved efficiently in theory, more study is needed to reveal practical algorithms for solving large problems quickly. To encourage future research, we sketch some alternative methods of analysis that rely on the structure of MDPs.
Multiple Object Tracking using KShortest Paths Optimization
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2011
"... Multiobject tracking can be achieved by detecting objects in individual frames and then linking detections across frames. Such an approach can be made very robust to the occasional detection failure: If an object is not detected in a frame but is in previous and following ones, a correct trajectory ..."
Abstract

Cited by 106 (6 self)
 Add to MetaCart
Multiobject tracking can be achieved by detecting objects in individual frames and then linking detections across frames. Such an approach can be made very robust to the occasional detection failure: If an object is not detected in a frame but is in previous and following ones, a correct trajectory will nevertheless be produced. By contrast, a falsepositive detection in a few frames will be ignored. However, when dealing with a multiple target problem, the linking step results in a difficult optimization problem in the space of all possible families of trajectories. This is usually dealt with by sampling or greedy search based on variants of Dynamic Programming, which can easily miss the global optimum. In this paper, we show that reformulating that step as a constrained flow optimization results in a convex problem. We take advantage of its particular structure to solve it using the kshortest paths algorithm, which is very fast. This new approach is far simpler formally and algorithmically than existing techniques and lets us demonstrate excellent performance in two very different contexts.
On the Approximability of Minimizing Nonzero Variables Or Unsatisfied Relations in Linear Systems
, 1997
"... We investigate the computational complexity of two closely related classes of combinatorial optimization problems for linear systems which arise in various fields such as machine learning, operations research and pattern recognition. In the first class (Min ULR) one wishes, given a possibly infeasib ..."
Abstract

Cited by 97 (3 self)
 Add to MetaCart
We investigate the computational complexity of two closely related classes of combinatorial optimization problems for linear systems which arise in various fields such as machine learning, operations research and pattern recognition. In the first class (Min ULR) one wishes, given a possibly infeasible system of linear relations, to find a solution that violates as few relations as possible while satisfying all the others. In the second class (Min RVLS) the linear system is supposed to be feasible and one looks for a solution with as few nonzero variables as possible. For both Min ULR and Min RVLS the four basic types of relational operators =, , ? and 6= are considered. While Min RVLS with equations was known to be NPhard in [27], we established in [2, 5] that Min ULR with equalities and inequalities are NPhard even when restricted to homogeneous systems with bipolar coefficients. The latter problems have been shown hard to approximate in [8]. In this paper we determine strong bou...
Robust Trainability of Single Neurons
, 1995
"... It is well known that (McCullochPitts) neurons are efficiently trainable to learn an unknown halfspace from examples, using linearprogramming methods. We want to analyze how the learning performance degrades when the representational power of the neuron is overstrained, i.e., if more complex conce ..."
Abstract

Cited by 93 (0 self)
 Add to MetaCart
It is well known that (McCullochPitts) neurons are efficiently trainable to learn an unknown halfspace from examples, using linearprogramming methods. We want to analyze how the learning performance degrades when the representational power of the neuron is overstrained, i.e., if more complex concepts than just halfspaces are allowed. We show that the problem of learning a probably almost optimal weight vector for a neuron is so difficult that the minimum error cannot even be approximated to within a constant factor in polynomial time (unless RP = NP); we obtain the same hardness result for several variants of this problem. We considerably strengthen these negative results for neurons with binary weights 0 or 1. We also show that neither heuristical learning nor learning by sigmoidal neurons with a constant reject rate is efficiently possible (unless RP = NP).
The Complexity and Approximability of Finding Maximum Feasible Subsystems of Linear Relations
 Theoretical Computer Science
, 1993
"... We study the combinatorial problem which consists, given a system of linear relations, of finding a maximum feasible subsystem, that is a solution satisfying as many relations as possible. The computational complexity of this general problem, named Max FLS, is investigated for the four types of rela ..."
Abstract

Cited by 87 (11 self)
 Add to MetaCart
We study the combinatorial problem which consists, given a system of linear relations, of finding a maximum feasible subsystem, that is a solution satisfying as many relations as possible. The computational complexity of this general problem, named Max FLS, is investigated for the four types of relations =, , ? and 6=. Various constrained versions of Max FLS, where a subset of relations must be satisfied or where the variables take bounded discrete values, are also considered. We establish the complexity of solving these problems optimally and, whenever they are intractable, we determine their degree of approximability. Max FLS with =, or ? relations is NPhard even when restricted to homogeneous systems with bipolar coefficients, whereas it can be solved in polynomial time for 6= relations with real coefficients. The various NPhard versions of Max FLS belong to different approximability classes depending on the type of relations and the additional constraints. We show that the ran...