Results 1 
4 of
4
Feedback shift registers, 2adic span, and combiners with memory
 Journal of Cryptology
, 1997
"... Feedback shift registers with carry operation (FCSR’s) are described, implemented, and analyzed with respect to memory requirements, initial loading, period, and distributional properties of their output sequences. Many parallels with the theory of linear feedback shift registers (LFSR’s) are presen ..."
Abstract

Cited by 50 (7 self)
 Add to MetaCart
Feedback shift registers with carry operation (FCSR’s) are described, implemented, and analyzed with respect to memory requirements, initial loading, period, and distributional properties of their output sequences. Many parallels with the theory of linear feedback shift registers (LFSR’s) are presented, including a synthesis algorithm (analogous to the BerlekampMassey algorithm for LFSR’s) which, for any pseudorandom sequence, constructs the smallest FCSR which will generate the sequence. These techniques are used to attack the summation cipher. This analysis gives a unified approach to the study of pseudorandom sequences, arithmetic codes, combiners with memory, and the MarsagliaZaman random number generator. Possible variations on the FCSR architecture are indicated at the end. Index Terms – Binary sequence, shift register, stream cipher, combiner with memory, cryptanalysis, 2adic numbers, arithmetic code, 1/q sequence, linear span. 1
Algebraic feedback shift registers
 Theoretical Comp. Sci
, 1999
"... A general framework for the design of feedback registers based on algebra over complete rings is described. These registers generalize linear feedback shift registers and feedback with carry shift registers. Basic properties of the output sequences are studied: relations to the algebra of the underl ..."
Abstract

Cited by 8 (3 self)
 Add to MetaCart
A general framework for the design of feedback registers based on algebra over complete rings is described. These registers generalize linear feedback shift registers and feedback with carry shift registers. Basic properties of the output sequences are studied: relations to the algebra of the underlying ring; synthesis of the register from the sequence (which has implications for cryptanalysis); and basic statistical properties. These considerations lead to security measures for stream ciphers, analogous to the notion of linear complexity that arises from linear feedback shift registers. We also show that when the underlying ring is a polynomial ring over a finite field, the new registers can be simulated by linear feedback shift registers with small nonlinear filters. Key words: cryptography; feedback shift register; complete ring; stream cipher; pseudorandom number generator. 1
Research Summary
"... models for answering questions on the existence of secure families of sequence generators. 5. Design and analysis of families of sequences for secure spreadspectrum communications. These sequences include geometric sequences and dform sequences (the latter invented by me). ..."
Abstract
 Add to MetaCart
models for answering questions on the existence of secure families of sequence generators. 5. Design and analysis of families of sequences for secure spreadspectrum communications. These sequences include geometric sequences and dform sequences (the latter invented by me).
Cryptanalysis Based on . . .
, 1995
"... This paper presents a new algorithm for cryptanalytically attacking stream ciphers. There is an associated measure of security, the 2adac 8pan. In order for a stream cipher to be secure, its Zadic span must be large. This attack exposes a weakness of Rueppel and Massey's summation combiner. The a ..."
Abstract
 Add to MetaCart
This paper presents a new algorithm for cryptanalytically attacking stream ciphers. There is an associated measure of security, the 2adac 8pan. In order for a stream cipher to be secure, its Zadic span must be large. This attack exposes a weakness of Rueppel and Massey's summation combiner. The algorithm, based on De Weger and Mahler's rational approximation theory for 2adic numbers, synthesizes a shortest feedback with cam shaft qwter that outputs a particular key stream, given a small number of bits of the key stream. It is adaptive in that it does not neeed to know the number of available bits beforehand.