Results 1 
3 of
3
Universal homotopy theories
 Adv. Math
"... Abstract. Begin with a small category C. The goal of this short note is to point out that there is such a thing as a ‘universal model category built from C’. We describe applications of this to the study of homotopy colimits, the DwyerKan theory of framings, to sheaf theory, and to the homotopy the ..."
Abstract

Cited by 37 (3 self)
 Add to MetaCart
Abstract. Begin with a small category C. The goal of this short note is to point out that there is such a thing as a ‘universal model category built from C’. We describe applications of this to the study of homotopy colimits, the DwyerKan theory of framings, to sheaf theory, and to the homotopy theory of schemes. Contents
Simplicial Structures on Model Categories and Functors
 Amer.J.Math.123
, 2001
"... We produce a highly structured way of associating a simplicial category to a model category which improves on work of Dwyer and Kan and answers a question of Hovey. We show that model categories satisfying a certain axiom are Quillen equivalent to simplicial model categories. A simplicial model cate ..."
Abstract

Cited by 15 (3 self)
 Add to MetaCart
We produce a highly structured way of associating a simplicial category to a model category which improves on work of Dwyer and Kan and answers a question of Hovey. We show that model categories satisfying a certain axiom are Quillen equivalent to simplicial model categories. A simplicial model category provides higher order structure such as composable mapping spaces and homotopy colimits. We also show that certain homotopy invariant functors can be replaced by weakly equivalent simplicial, or "continuous," functors. This is used to show that if a simplicial model category structure exists on a model category then it is unique up to simplicial Quillen equivalence.
ON LEFT AND RIGHT MODEL CATEGORIES AND LEFT AND RIGHT BOUSFIELD LOCALIZATIONS
"... We verify the existence of left Bousfield localizations and of enriched left Bousfield localizations, and we prove a collection of useful technical results characterizing certain fibrations of (enriched) left Bousfield localizations. We also use such Bousfield localizations to construct a number of ..."
Abstract
 Add to MetaCart
We verify the existence of left Bousfield localizations and of enriched left Bousfield localizations, and we prove a collection of useful technical results characterizing certain fibrations of (enriched) left Bousfield localizations. We also use such Bousfield localizations to construct a number of new model categories, including models for the homotopy limit of right Quillen presheaves, for Postnikov towers in model categories, and for presheaves valued in a symmetric monoidal model category satisfying a homotopycoherent descent condition. We then verify the existence of right Bousfield localizations of right model categories, and we apply this to construct a model of the homotopy limit of a left Quillen presheaf as a right model category.