Results 1  10
of
313
Learning to rank using gradient descent
 In ICML
, 2005
"... We investigate using gradient descent methods for learning ranking functions; we propose a simple probabilistic cost function, and we introduce RankNet, an implementation of these ideas using a neural network to model the underlying ranking function. We present test results on toy data and on data f ..."
Abstract

Cited by 365 (16 self)
 Add to MetaCart
We investigate using gradient descent methods for learning ranking functions; we propose a simple probabilistic cost function, and we introduce RankNet, an implementation of these ideas using a neural network to model the underlying ranking function. We present test results on toy data and on data from a commercial internet search engine. 1.
A support vector method for multivariate performance measures
 Proceedings of the 22nd International Conference on Machine Learning
, 2005
"... This paper presents a Support Vector Method for optimizing multivariate nonlinear performance measures like the F1score. Taking a multivariate prediction approach, we give an algorithm with which such multivariate SVMs can be trained in polynomial time for large classes of potentially nonlinear per ..."
Abstract

Cited by 200 (5 self)
 Add to MetaCart
This paper presents a Support Vector Method for optimizing multivariate nonlinear performance measures like the F1score. Taking a multivariate prediction approach, we give an algorithm with which such multivariate SVMs can be trained in polynomial time for large classes of potentially nonlinear performance measures, in particular ROCArea and all measures that can be computed from the contingency table. The conventional classification SVM arises as a special case of our method. 1.
Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales
 In Proc. 43st ACL
, 2005
"... We address the ratinginference problem, wherein rather than simply decide whether a review is “thumbs up ” or “thumbs down”, as in previous sentiment analysis work, one must determine an author’s evaluation with respect to a multipoint scale (e.g., one to five “stars”). This task represents an int ..."
Abstract

Cited by 182 (2 self)
 Add to MetaCart
We address the ratinginference problem, wherein rather than simply decide whether a review is “thumbs up ” or “thumbs down”, as in previous sentiment analysis work, one must determine an author’s evaluation with respect to a multipoint scale (e.g., one to five “stars”). This task represents an interesting twist on standard multiclass text categorization because there are several different degrees of similarity between class labels; for example, “three stars ” is intuitively closer to “four stars ” than to “one star”. We first evaluate human performance at the task. Then, we apply a metaalgorithm, based on a metric labeling formulation of the problem, that alters a givenary classifier’s output in an explicit attempt to ensure that similar items receive similar labels. We show that the metaalgorithm can provide significant improvements over both multiclass and regression versions of SVMs when we employ a novel similarity measure appropriate to the problem. 1
Query chains: Learning to rank from implicit feedback
 In ACM SIGKDD International Conference On Knowledge Discovery and Data Mining (KDD
, 2005
"... This paper presents a novel approach for using clickthrough data to learn ranked retrieval functions for web search results. We observe that users searching the web often perform a sequence, or chain, of queries with a similar information need. Using query chains, we generate new types of preference ..."
Abstract

Cited by 181 (10 self)
 Add to MetaCart
This paper presents a novel approach for using clickthrough data to learn ranked retrieval functions for web search results. We observe that users searching the web often perform a sequence, or chain, of queries with a similar information need. Using query chains, we generate new types of preference judgments from search engine logs, thus taking advantage of user intelligence in reformulating queries. To validate our method we perform a controlled user study comparing generated preference judgments to explicit relevance judgments. We also implemented a realworld search engine to test our approach, using a modified ranking SVM to learn an improved ranking function from preference data. Our results demonstrate significant improvements in the ranking given by the search engine. The learned rankings outperform both a static ranking function, as well as one trained without considering query chains.
Pranking with Ranking
 Advances in Neural Information Processing Systems 14
, 2001
"... We discuss the problem of ranking instances. In our framework each instance is associated with a rank or a rating, which is an integer from 1 to k. Our goal is to find a rankprediction rule that assigns each instance a rank which is as close as possible to the instance's true rank. We describe ..."
Abstract

Cited by 168 (5 self)
 Add to MetaCart
We discuss the problem of ranking instances. In our framework each instance is associated with a rank or a rating, which is an integer from 1 to k. Our goal is to find a rankprediction rule that assigns each instance a rank which is as close as possible to the instance's true rank. We describe a simple and efficient online algorithm, analyze its performance in the mistake bound model, and prove its correctness. We describe two sets of experiments, with synthetic data and with the EachMovie dataset for collaborative filtering. In the experiments we performed, our algorithm outperforms online algorithms for regression and classification applied to ranking.
A support vector method for optimizing average precision
 In Proceedings of SIGIR’07
, 2007
"... Machine learning is commonly used to improve ranked retrieval systems. Due to computational difficulties, few learning techniques have been developed to directly optimize for mean average precision (MAP), despite its widespread use in evaluating such systems. Existing approaches optimizing MAP eithe ..."
Abstract

Cited by 120 (5 self)
 Add to MetaCart
Machine learning is commonly used to improve ranked retrieval systems. Due to computational difficulties, few learning techniques have been developed to directly optimize for mean average precision (MAP), despite its widespread use in evaluating such systems. Existing approaches optimizing MAP either do not find a globally optimal solution, or are computationally expensive. In contrast, we present a general SVM learning algorithm that efficiently finds a globally optimal solution to a straightforward relaxation of MAP. We evaluate our approach using the TREC 9 and TREC 10 Web Track corpora (WT10g), comparing against SVMs optimized for accuracy and ROCArea. In most cases we show our method to produce statistically significant improvements in MAP scores.
Learning Structural SVMs with Latent Variables
"... It is well known in statistics and machine learning that the combination of latent (or hidden) variables and observed variables offer more expressive power than models with observed variables alone. Latent variables ..."
Abstract

Cited by 119 (2 self)
 Add to MetaCart
It is well known in statistics and machine learning that the combination of latent (or hidden) variables and observed variables offer more expressive power than models with observed variables alone. Latent variables
Evaluating the accuracy of implicit feedback from clicks and query reformulations in web search
 ACM TRANSACTIONS ON INFORMATION SCIENCE (TOIS
, 2007
"... This paper examines the reliability of implicit feedback generated from clickthrough data and query reformulations in WWW search. Analyzing the users ’ decision process using eyetracking and comparing implicit feedback against manual relevance judgments, we conclude that clicks are informative but b ..."
Abstract

Cited by 116 (15 self)
 Add to MetaCart
This paper examines the reliability of implicit feedback generated from clickthrough data and query reformulations in WWW search. Analyzing the users ’ decision process using eyetracking and comparing implicit feedback against manual relevance judgments, we conclude that clicks are informative but biased. While this makes the interpretation of clicks as absolute relevance judgments difficult, we show that relative preferences derived from clicks are reasonably accurate on average. We find that such relative preferences are accurate not only between results from an individual query, but across multiple sets of results within chains of query reformulations.
Letor: Benchmark dataset for research on learning to rank for information retrieval
 In Proceedings of SIGIR 2007 Workshop on Learning to Rank for Information Retrieval
, 2007
"... This paper is concerned with learning to rank for information retrieval (IR). Ranking is the central problem for information retrieval, and employing machine learning techniques to learn the ranking function is viewed as a promising approach to IR. Unfortunately, there was no benchmark dataset that ..."
Abstract

Cited by 104 (11 self)
 Add to MetaCart
This paper is concerned with learning to rank for information retrieval (IR). Ranking is the central problem for information retrieval, and employing machine learning techniques to learn the ranking function is viewed as a promising approach to IR. Unfortunately, there was no benchmark dataset that could be used in comparison of existing learning algorithms and in evaluation of newly proposed algorithms, which stood in the way of the related research. To deal with the problem, we have constructed a benchmark dataset referred to as LETOR and distributed it to the research communities. Specifically we have derived the LETOR data from the existing data sets widely used in IR, namely, OHSUMED and TREC data. The two collections contain queries, the contents of the retrieved documents, and human judgments on the relevance of the documents with respect to the queries. We have extracted features from the datasets, including both conventional features, such as term frequency, inverse document frequency, BM25, and language models for IR, and features proposed recently at SIGIR, such as HostRank, feature propagation, and topical PageRank. We have then packaged LETOR with the extracted features, queries, and relevance judgments. We have also provided the results of several stateofthearts learning to rank algorithms on the data. This paper describes in details about LETOR.
A boosting algorithm for information retrieval
 In Proceedings of SIGIR’07
, 2007
"... In this paper we address the issue of learning to rank for document retrieval. In the task, a model is automatically created with some training data and then is utilized for ranking of documents. The goodness of a model is usually evaluated with performance measures such as MAP (Mean Average Precisi ..."
Abstract

Cited by 97 (20 self)
 Add to MetaCart
In this paper we address the issue of learning to rank for document retrieval. In the task, a model is automatically created with some training data and then is utilized for ranking of documents. The goodness of a model is usually evaluated with performance measures such as MAP (Mean Average Precision) and NDCG (Normalized Discounted Cumulative Gain). Ideally a learning algorithm would train a ranking model that could directly optimize the performance measures with respect to the training data. Existing methods, however, are only able to train ranking models by minimizing loss functions loosely related to the performance measures. For example, Ranking SVM and RankBoost train ranking models by minimizing classification errors on instance pairs. To deal with the problem, we propose a novel learning algorithm within the framework of boosting, which can minimize a loss function directly defined on the performance measures. Our algorithm, referred to as AdaRank, repeatedly constructs ‘weak rankers ’ on the basis of reweighted training data and finally linearly combines the weak rankers for making ranking predictions. We prove that the training process of AdaRank is exactly that of enhancing the performance measure used. Experimental results on four benchmark datasets show that AdaRank significantly outperforms the baseline methods of BM25, Ranking SVM, and RankBoost.