Results 1 
3 of
3
Notions of computability at higher types II
 In preparation
, 2001
"... ntroduce some simple general theory to allow us to talk about notions of highertype computable functional. The following definitions (with minor variations) appear frequently in the literature. Definition 1.1 (Weak partial type structures) A weak partial type structure, or weak PTS A [over a set X ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
ntroduce some simple general theory to allow us to talk about notions of highertype computable functional. The following definitions (with minor variations) appear frequently in the literature. Definition 1.1 (Weak partial type structures) A weak partial type structure, or weak PTS A [over a set X], consists of the following data: . for each type #, a set A # of elements of type # [equipped with a canonical bijection A 0 # = X], . for each #, # , a partial application function ## : A ### A # # A # . We usually omit type subscripts from application operations, and often write x y simply as xy. By convention, w
Matching typed and untyped realizability (Extended abstract)
"... Realizability interpretations of logics are given by saying what it means for computational objects of some kind to realize logical formulae. The computational objects in question might be drawn from an untyped universe of computation, such as a partial combinatory algebra, or they might be typed ob ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Realizability interpretations of logics are given by saying what it means for computational objects of some kind to realize logical formulae. The computational objects in question might be drawn from an untyped universe of computation, such as a partial combinatory algebra, or they might be typed objects such as terms of a PCFstyle programming language. In some instances, one can show that a particular untyped realizability interpretation matches a particular typed one, in the sense that they give the same set of realizable formulae. In this case, we have a very good fit indeed between the typed language and the untyped realizability model—we refer to this condition as (constructive) logical full abstraction. We give some examples of this situation for a variety of extensions of PCF. Of particular interest are some models that are logically fully abstract for typed languages including nonfunctional features. Our results establish connections between what is computable in various programming languages, and what is true inside various realizability toposes. We consider some examples of logical formulae to illustrate these ideas, in particular their application to exact realnumber computability. The present article summarizes the material I presented at the Domains IV workshop, plus a few subsequent developments; it is really an extended abstract for a projected journal paper. No proofs are included in the present version. 0