Results 1  10
of
16
Logic programming revisited: logic programs as inductive definitions
 ACM Transactions on Computational Logic
, 2001
"... Logic programming has been introduced as programming in the Horn clause subset of first order logic. This view breaks down for the negation as failure inference rule. To overcome the problem, one line of research has been to view a logic program as a set of iffdefinitions. A second approach was to ..."
Abstract

Cited by 34 (21 self)
 Add to MetaCart
Logic programming has been introduced as programming in the Horn clause subset of first order logic. This view breaks down for the negation as failure inference rule. To overcome the problem, one line of research has been to view a logic program as a set of iffdefinitions. A second approach was to identify a unique canonical, preferred or intended model among the models of the program and to appeal to common sense to validate the choice of such model. Another line of research developed the view of logic programming as a nonmonotonic reasoning formalism strongly related to Default Logic and Autoepistemic Logic. These competing approaches have resulted in some confusion about the declarative meaning of logic programming. This paper investigates the problem and proposes an alternative epistemological foundation for the canonical model approach, which is not based on common sense but on a solid mathematical information principle. The thesis is developed that logic programming can be understood as a natural and general logic of inductive definitions. In particular, logic programs with negation represent nonmonotone inductive definitions. It is argued that this thesis results in an alternative justification of the wellfounded model as the unique intended model of the logic program. In addition, it equips logic programs with an easy to comprehend meaning
Computability and recursion
 BULL. SYMBOLIC LOGIC
, 1996
"... We consider the informal concept of “computability” or “effective calculability” and two of the formalisms commonly used to define it, “(Turing) computability” and “(general) recursiveness.” We consider their origin, exact technical definition, concepts, history, general English meanings, how they b ..."
Abstract

Cited by 33 (0 self)
 Add to MetaCart
We consider the informal concept of “computability” or “effective calculability” and two of the formalisms commonly used to define it, “(Turing) computability” and “(general) recursiveness.” We consider their origin, exact technical definition, concepts, history, general English meanings, how they became fixed in their present roles, how they were first and are now used, their impact on nonspecialists, how their use will affect the future content of the subject of computability theory, and its connection to other related areas. After a careful historical and conceptual analysis of computability and recursion we make several recommendations in section §7 about preserving the intensional differences between the concepts of “computability” and “recursion.” Specifically we recommend that: the term “recursive ” should no longer carry the additional meaning of “computable” or “decidable;” functions defined using Turing machines, register machines, or their variants should be called “computable” rather than “recursive;” we should distinguish the intensional difference between Church’s Thesis and Turing’s Thesis, and use the latter particularly in dealing with mechanistic questions; the name of the subject should be “Computability Theory” or simply Computability rather than
Notions of computability at higher types I
 In Logic Colloquium 2000
, 2005
"... We discuss the conceptual problem of identifying the natural notions of computability at higher types (over the natural numbers). We argue for an eclectic approach, in which one considers a wide range of possible approaches to defining higher type computability and then looks for regularities. As a ..."
Abstract

Cited by 11 (5 self)
 Add to MetaCart
We discuss the conceptual problem of identifying the natural notions of computability at higher types (over the natural numbers). We argue for an eclectic approach, in which one considers a wide range of possible approaches to defining higher type computability and then looks for regularities. As a first step in this programme, we give an extended survey of the di#erent strands of research on higher type computability to date, bringing together material from recursion theory, constructive logic and computer science. The paper thus serves as a reasonably complete overview of the literature on higher type computability. Two sequel papers will be devoted to developing a more systematic account of the material reviewed here.
Functional interpretation and inductive definitions
 Journal of Symbolic Logic
"... Abstract. Extending Gödel’s Dialectica interpretation, we provide a functional interpretation of classical theories of positive arithmetic inductive definitions, reducing them to theories of finitetype functionals defined using transfinite recursion on wellfounded trees. 1. ..."
Abstract

Cited by 8 (3 self)
 Add to MetaCart
Abstract. Extending Gödel’s Dialectica interpretation, we provide a functional interpretation of classical theories of positive arithmetic inductive definitions, reducing them to theories of finitetype functionals defined using transfinite recursion on wellfounded trees. 1.
The history and concept of computability
 in Handbook of Computability Theory
, 1999
"... We consider the informal concept of a “computable ” or “effectively calculable” function on natural numbers and two of the formalisms used to define it, computability” and “(general) recursiveness. ” We consider their origin, exact technical definition, concepts, history, how they became fixed in th ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
We consider the informal concept of a “computable ” or “effectively calculable” function on natural numbers and two of the formalisms used to define it, computability” and “(general) recursiveness. ” We consider their origin, exact technical definition, concepts, history, how they became fixed in their present roles, and how
Turing Oracle Machines, Online Computing, and Three Displacements in Computability Theory
, 2009
"... ..."
Levels of Undecidability in Rewriting
, 2011
"... Undecidability of various properties of first order term rewriting systems is wellknown. An undecidable property can be classified by the complexity of the formula defining it. This classification gives rise to a hierarchy of distinct levels of undecidability, starting from the arithmetical hierarc ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
Undecidability of various properties of first order term rewriting systems is wellknown. An undecidable property can be classified by the complexity of the formula defining it. This classification gives rise to a hierarchy of distinct levels of undecidability, starting from the arithmetical hierarchy classifying properties using first order arithmetical formulas, and continuing into the analytic hierarchy, where quantification over function variables is allowed. In this paper we give an overview of how the main properties of first order term rewriting systems are classified in these hierarchies. We consider properties related to normalization (strong normalization, weak normalization and dependency problems) and properties related to confluence (confluence, local confluence and the unique normal form property). For all of these we distinguish between the single term version and the uniform version. Where appropriate, we also distinguish between ground and open terms. Most uniform properties are Π 0 2complete. The particular problem of local confluence turns out to be Π 0 2complete for ground terms, but only Σ 0 1complete (and thereby recursively enumerable) for open terms. The most surprising result concerns dependency pair problems without minimality flag: we prove this problem to be Π 1 1complete, hence not in the arithmetical hierarchy, but properly in the analytic hierarchy. Some of our results are new or have appeared in our earlier publications [35, 7]. Others are based on folklore constructions, and are included for completeness as their precise classifications have hardly been noticed previously.
On the Expressive Power of Logics on Finite Models
, 2003
"... Structures" [Mos74], where they are called inductive relations. It should also be pointed out that in Immerman's book on "Descriptive Complexity" LFP is denoted by FO(LFP) (the closure of FO under least fixedpoints) and LFP 1 is denoted by LFP(FO) (least fixedpoints of firstor ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
Structures" [Mos74], where they are called inductive relations. It should also be pointed out that in Immerman's book on "Descriptive Complexity" LFP is denoted by FO(LFP) (the closure of FO under least fixedpoints) and LFP 1 is denoted by LFP(FO) (least fixedpoints of firstorder formulas).
Kleene’s Amazing Second Recursion Theorem (Extended Abstract)
"... This little gem is stated unbilled and proved (completely) in the last two lines of §2 of the short note Kleene (1938). In modern notation, with all the hypotheses stated explicitly and in a strong form, it reads as follows: Theorem 1 (SRT). Fix a set V ⊆ N, and suppose that for each natural number ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
This little gem is stated unbilled and proved (completely) in the last two lines of §2 of the short note Kleene (1938). In modern notation, with all the hypotheses stated explicitly and in a strong form, it reads as follows: Theorem 1 (SRT). Fix a set V ⊆ N, and suppose that for each natural number n ∈ N = {0, 1, 2,...}, ϕ n: N n+1 ⇀ V is a recursive partial function of (n + 1) arguments with values in V so that the standard assumptions (1) and (2) hold with {e}(⃗x) = ϕ n e (⃗x) = ϕ n (e, ⃗x) (⃗x = (x1,..., xn) ∈ N n). (1) Every nary recursive partial function with values in V is ϕ n e for some e. (2) For all m, n, there is a recursive (total) function S = S m n: N m+1 → N such that {S(e, ⃗y)}(⃗x) = {e}(⃗y, ⃗x) (e ∈ N, ⃗y ∈ N m, ⃗x ∈ N n). Then, for every recursive, partial function f(e, ⃗y, ⃗x) of (1+m+n) arguments with values in V, there is a total recursive function ˜z(⃗y) of m arguments such that