Results 1 
6 of
6
Preservation of interpolation features by fibring
 Journal of Logic and Computation
"... Fibring is a metalogical constructor that permits to combine different logics by operating on their deductive systems under certain natural restrictions, as for example that the two given logics are presented by deductive systems of the same type. Under such circumstances, fibring will produce a new ..."
Abstract

Cited by 12 (11 self)
 Add to MetaCart
(Show Context)
Fibring is a metalogical constructor that permits to combine different logics by operating on their deductive systems under certain natural restrictions, as for example that the two given logics are presented by deductive systems of the same type. Under such circumstances, fibring will produce a new deductive system by means of the free use of inference rules from both deductive systems, provided the rules are schematic, in the sense of using variables that are open for application to formulas with new linguistic symbols (from the point of view of each logic component). Fibring is a generalization of fusion, a less general but wider developed mechanism which permits results of the following kind: if each logic component is decidable (or sound, or complete with respect to a certain semantics) then the resulting logic heirs such a property. The interest for such preservation results for combining logics is evident, and they have been achieved in the more general setting of fibring in several cases. The Craig interpolation property and the Maehara interpolation have a special significance when combining logics, being related to certain problems of complexity theory, some properties of model theory and to the usual (global) metatheorem of deduction. When the peculiarities of the distinction between local and global deduction interfere, justifying what we call careful reasoning, the question of preservation of interpolation becomes more subtle and other forms of interpolation can be distinguished. These questions are investigated and several (global and local) preservation results for interpolation are obtained for fibring logics that fulfill mild requirements. AMS Classification: 03C40, 03B22, 03B45 1
Some Combinatorics behind Proofs
, 1995
"... We try to bring to light some combinatorial structure underlying formal proofs in logic. We do this through the study of the Craig Interpolation Theorem which is properly a statement about the structure of formal derivations. We show ..."
Abstract

Cited by 7 (5 self)
 Add to MetaCart
We try to bring to light some combinatorial structure underlying formal proofs in logic. We do this through the study of the Craig Interpolation Theorem which is properly a statement about the structure of formal derivations. We show
Interpolants, Cut Elimination and Flow Graphs . . .
, 1997
"... We analyse the structure of propositional proofs in the sequent calculus focusing on the wellknown procedures of Interpolation and Cut Elimination. We are motivated in part by the desire to understand why a tautology might be ‘hard to prove’. Given a proof we associate to it a logical graph tracing ..."
Abstract

Cited by 4 (3 self)
 Add to MetaCart
We analyse the structure of propositional proofs in the sequent calculus focusing on the wellknown procedures of Interpolation and Cut Elimination. We are motivated in part by the desire to understand why a tautology might be ‘hard to prove’. Given a proof we associate to it a logical graph tracing the flow of formulas in it (Buss, 1991). We show some general facts about logical graphs such as acyclic @ of cutfree proofs and acyclic @ of contractionfree proofs (possibly containing cuts), and we give a proof of a strengthened version of the Craig Interpolation Theorem based on flows of formulas. We show that tautologies having minimal interpolants of nonlinear size (i.e. number of symbols) must have proofs with certain precise structural properties. We then show that given a proof ZI and a cutfree form Il ’ associated to it (obtained by a particular cut elimination procedure), certain subgraphs of II ’ which are logical graphs (i.e. graphs of proofs) correspond to subgraphs of Zl which are logical graphs for the same sequent. This locality property of cut elimination leads to new results on the complexity of interpolants, which cannot follow from the known constructions proving the Craig Interpolation Theorem.
Interpolation via translations
"... A new technique is presented for proving that a consequence system enjoys Craig interpolation or Maehara interpolation based on the fact that these properties hold in another consequence system. This technique is based on the existence of a back and forth translation satisfying some properties betwe ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
(Show Context)
A new technique is presented for proving that a consequence system enjoys Craig interpolation or Maehara interpolation based on the fact that these properties hold in another consequence system. This technique is based on the existence of a back and forth translation satisfying some properties between the consequence systems. Some examples of translations satisfying those properties are described. Namely a translation between the global/local consequence systems induced by fragments of linear logic, a KolmogorovGentzenGödel style translation, and a new translation between the global consequence systems induced by full Lambek calculus and linear logic, mixing features of a KiriyamaOno style translation with features of a KolmogorovGentzenGödel style translation. These translations establish a strong relationship between the logics involved and are used to obtain new results about whether Craig interpolation and Maehara interpolation hold in that logics. AMS Classification: 03C40, 03F03, 03B22
Craig Interpolation in the Presence of Unreliable Connectives
, 2014
"... Arrow and turnstile interpolations are investigated in UCL (introduced in [32]), a logic that is a complete extension of classical propositional logic for reasoning about connectives that only behave as expected with a given probability. Arrow interpolation is shown to hold in general and turnstile ..."
Abstract
 Add to MetaCart
(Show Context)
Arrow and turnstile interpolations are investigated in UCL (introduced in [32]), a logic that is a complete extension of classical propositional logic for reasoning about connectives that only behave as expected with a given probability. Arrow interpolation is shown to hold in general and turnstile interpolation is established under some provisos.