Results 1  10
of
182
A general limit theorem for recursive algorithms and combinatorial structures
 ANN. APPL. PROB
, 2004
"... Limit laws are proven by the contraction method for random vectors of a recursive nature as they arise as parameters of combinatorial structures such as random trees or recursive algorithms, where we use the Zolotarev metric. In comparison to previous applications of this method, a general transfer ..."
Abstract

Cited by 53 (25 self)
 Add to MetaCart
Limit laws are proven by the contraction method for random vectors of a recursive nature as they arise as parameters of combinatorial structures such as random trees or recursive algorithms, where we use the Zolotarev metric. In comparison to previous applications of this method, a general transfer theorem is derived which allows us to establish a limit law on the basis of the recursive structure and to use the asymptotics of the first and second moments of the sequence. In particular, a general asymptotic normality result is obtained by this theorem which typically cannot be handled by the more common ℓ2 metrics. As applications we derive quite automatically many asymptotic limit results ranging from the size of tries or mary search trees and path lengths in digital structures to mergesort and parameters of random recursive trees, which were previously shown by different methods one by one. We also obtain a related local density approximation result as well as a global approximation result. For the proofs of these results we establish that a smoothed density distance as well as a smoothed total variation distance can be estimated from above by the Zolotarev metric, which is the main tool in this article.
Wavelets through a Looking Glass. The World of the Spectrum
, 2001
"... harmonic analysis and wavelets in R n , The Functional and Harmonic Analysis of Wavelets and Frames (San Antonio, 1999) (L.W. Baggett and D.R. Larson, eds.), Contemp. Math., vol. 247, American Mathematical Society, Providence, 1999, pp. 1727. 56 References [BBC+95] A. Barenco, C.H. Bennett, R ..."
Abstract

Cited by 30 (20 self)
 Add to MetaCart
harmonic analysis and wavelets in R n , The Functional and Harmonic Analysis of Wavelets and Frames (San Antonio, 1999) (L.W. Baggett and D.R. Larson, eds.), Contemp. Math., vol. 247, American Mathematical Society, Providence, 1999, pp. 1727. 56 References [BBC+95] A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J.A. Smolin, and H. Weinfurter, Elementary gates for quantum computation, Phys. Rev. A 52 (1995), 34573467. [BBGK71] V. Bargmann, P. Butera, L. Girardello, and J.R. Klauder, On the completeness of the coherent states, Rep. Mathematical Phys. 2 (1971), 221228. [BDMT98] G.P. Berman, G.D. Doolen, R. Mainieri, and V.I. Tsifrinovich,
Quickselect and Dickman function
 Combinatorics, Probability and Computing
, 2000
"... We show that the limiting distribution of the number of comparisons used by Hoare's quickselect algorithm when given a random permutation of n elements for finding the mth smallest element, where m = o(n), is the Dickman function. The limiting distribution of the number of exchanges is also derived ..."
Abstract

Cited by 24 (1 self)
 Add to MetaCart
We show that the limiting distribution of the number of comparisons used by Hoare's quickselect algorithm when given a random permutation of n elements for finding the mth smallest element, where m = o(n), is the Dickman function. The limiting distribution of the number of exchanges is also derived. 1 Quickselect Quickselect is one of the simplest and e#cient algorithms in practice for finding specified order statistics in a given sequence. It was invented by Hoare [19] and uses the usual partitioning procedure of quicksort: choose first a partitioning key, say x; regroup the given sequence into two parts corresponding to elements whose values are less than and larger than x, respectively; then decide, according to the size of the smaller subgroup, which part to continue recursively or to stop if x is the desired order statistics; see Figure 1 for an illustration in terms of binary search trees. For more details, see Guibas [15] and Mahmoud [26]. This algorithm , although ine#cient in the worst case, has linear mean when given a sequence of n independent and identically distributed continuous random variables, or equivalently, when given a random permutation of n elements, where, here and throughout this paper, all n! permutations are equally likely. Let C n,m denote the number of comparisons used by quickselect for finding the mth smallest element in a random permutation, where the first partitioning stage uses n 1 comparisons. Knuth [23] was the first to show, by some di#erencing argument, that E(C n,m ) = 2 (n + 3 + (n + 1)H n (m + 2)Hm (n + 3 m)H n+1m ) , n, where Hm = 1#k#m k 1 . A more transparent asymptotic approximation is E(C n,m ) (#), (#) := 2 #), # Part of the work of this author was done while he was visiting School of C...
Euclidean algorithms are Gaussian
, 2003
"... Abstract. We prove a Central Limit Theorem for a general class of costparameters associated to the three standard Euclidean algorithms, with optimal speed of convergence, and error terms for the mean and variance. For the most basic parameter of the algorithms, the number of steps, we go further an ..."
Abstract

Cited by 22 (10 self)
 Add to MetaCart
Abstract. We prove a Central Limit Theorem for a general class of costparameters associated to the three standard Euclidean algorithms, with optimal speed of convergence, and error terms for the mean and variance. For the most basic parameter of the algorithms, the number of steps, we go further and prove a Local Limit Theorem (LLT), with speed of convergence O((log N) −1/4+ǫ). This extends and improves the LLT obtained by Hensley [27] in the case of the standard Euclidean algorithm. We use a “dynamical analysis ” methodology, viewing an algorithm as a dynamical system (restricted to rational inputs), and combining tools imported from dynamics, such as the crucial transfer operators, with various other techniques: Dirichlet series, Perron’s formula, quasipowers theorems, the saddle point method. Dynamical analysis had previously been used to perform averagecase analysis of algorithms. For the present (dynamical) analysis in distribution, we require precise estimates on the transfer operators, when a parameter varies along vertical lines in the complex plane. Such estimates build on results obtained only recently by Dolgopyat in the context of continuoustime dynamics [20]. 1.
Harald Cramér and the distribution of prime numbers
 Scandanavian Actuarial J
, 1995
"... “It is evident that the primes are randomly distributed but, unfortunately, we don’t know what ‘random ’ means. ” — R. C. Vaughan (February 1990). After the first world war, Cramér began studying the distribution of prime numbers, guided by Riesz and MittagLeffler. His works then, and later in the ..."
Abstract

Cited by 20 (1 self)
 Add to MetaCart
“It is evident that the primes are randomly distributed but, unfortunately, we don’t know what ‘random ’ means. ” — R. C. Vaughan (February 1990). After the first world war, Cramér began studying the distribution of prime numbers, guided by Riesz and MittagLeffler. His works then, and later in the midthirties, have had a profound influence on the way mathematicians think about the distribution of prime numbers. In this article, we shall focus on how Cramér’s ideas have directed and motivated research ever since. One can only fully appreciate the significance of Cramér’s contributions by viewing his work in the appropriate historical context. We shall begin our discussion with the ideas of the ancient Greeks, Euclid and Eratosthenes. Then we leap in time to the nineteenth century, to the computations and heuristics of Legendre and Gauss, the extraordinarily analytic insights of Dirichlet and Riemann, and the crowning glory of these ideas, the proof the “Prime Number Theorem ” by Hadamard and de la Vallée Poussin in 1896. We pick up again in the 1920’s with the questions asked by Hardy and Littlewood,
Faster Fully Homomorphic Encryption
"... Abstract. We describe two improvements to Gentry's fully homomorphic scheme based on ideal lattices and its analysis: we provide a re ned analysis of one of the hardness assumptions (the one related to the Sparse Subset Sum Problem) and we introduce a probabilistic decryption algorithm that can be i ..."
Abstract

Cited by 18 (0 self)
 Add to MetaCart
Abstract. We describe two improvements to Gentry's fully homomorphic scheme based on ideal lattices and its analysis: we provide a re ned analysis of one of the hardness assumptions (the one related to the Sparse Subset Sum Problem) and we introduce a probabilistic decryption algorithm that can be implemented with an algebraic circuit of low multiplicative degree. Combined together, these improvements lead to a faster fully homomorphic scheme, with a e O(λ 3) bit complexity per elementary binary add/mult gate, where λ is the security parameter. These improvements also apply to the fully homomorphic schemes of Smart and Vercauteren [PKC'2010] and van Dijk et al. [Eurocrypt'2010]. Keywords: fully homomorphic encryption, ideal lattices, SSSP. 1
Similarity submodules and root systems in four dimensions
, 1999
"... Lattices and Zmodules in Euclidean space possess an infinitude of subsets that are images of the original set under similarity transformation. We classify such selfsimilar images according to their indices for certain 4D examples that are related to 4D root systems, both crystallographic and nonc ..."
Abstract

Cited by 17 (10 self)
 Add to MetaCart
Lattices and Zmodules in Euclidean space possess an infinitude of subsets that are images of the original set under similarity transformation. We classify such selfsimilar images according to their indices for certain 4D examples that are related to 4D root systems, both crystallographic and noncrystallographic. We encapsulate their statistics in terms of Dirichlet series generating functions and derive some of their asymptotic properties.