Results 1 
3 of
3
Increasing the Weight of Minimum Spanning Trees
, 1996
"... The problems of computing the maximum increase in the weight of the minimum spanning trees of a graph caused by the removal of a given number of edges, or by finite increases in the weights of the edges, are investigated. For the case of edge removals, the problem is shown to be NPhard and an \Omeg ..."
Abstract

Cited by 27 (1 self)
 Add to MetaCart
The problems of computing the maximum increase in the weight of the minimum spanning trees of a graph caused by the removal of a given number of edges, or by finite increases in the weights of the edges, are investigated. For the case of edge removals, the problem is shown to be NPhard and an \Omega\Gamma/ = log k)approximation algorithm is presented for it, where k is the number of edges to be removed. The second problem is studied assuming that the increase in the weight of an edge has an associated cost proportional to the magnitude of the change. An O(n 3 m 2 log(n 2 =m)) time algorithm is presented to solve it. 1 Introduction Consider a communication network in which information is broadcast over a minimum spanning tree. There are applications for which it is important to determine the maximum degradation in the performance of the broadcasting protocol that can be expected as a result of traffic fluctuations and link failures [25]. Also, there are several combinatorial op...
A Linear Algorithm for Analysis of Minimum Spanning and Shortest Path Trees of Planar Graphs
 Algorithmica
, 1992
"... We give a linear time and space algorithm for analyzing trees in planar graphs. The algorithm can be used to analyze the sensitivity of a minimum spanning tree to changes in edge costs, to find its replacement edges, and to verify its minimality. It can also be used to analyze the sensitivity of a s ..."
Abstract

Cited by 16 (0 self)
 Add to MetaCart
We give a linear time and space algorithm for analyzing trees in planar graphs. The algorithm can be used to analyze the sensitivity of a minimum spanning tree to changes in edge costs, to find its replacement edges, and to verify its minimality. It can also be used to analyze the sensitivity of a singlesource shortest path tree to changes in edge costs, and to analyze the sensitivity of a minimum cost network flow. The algorithm is simple and practical. It uses the properties of a planar embedding, combined with a heapordered queue data structure. Let G = (V; E) be a planar graph, either directed or undirected, with n vertices and m = O(n) edges. Each edge e 2 E has a realvalued cost cost(e). A minimum spanning tree of a connected, undirected planar graph G is a spanning tree of minimum total edge cost. If G is directed and r is a vertex from which all other vertices are reachable, then a shortest path tree from r is a spanning tree that contains a minimumcost path from r to every...
Efficient Algorithms for Robustness in Matroid Optimization
 PROCEEDINGS OF THE EIGHTH ANNUAL ACMSIAM SYMPOSIUM ON DISCRETE ALGORITHMS (NEW
, 1996
"... The robustness function of a matroid measures the maximum increase in the weight of its minimum weight bases that can be produced by increases of a given total cost on the weights of its elements. We present an algorithm for computing this function, that runs in strongly polynomial time for matroids ..."
Abstract

Cited by 8 (1 self)
 Add to MetaCart
The robustness function of a matroid measures the maximum increase in the weight of its minimum weight bases that can be produced by increases of a given total cost on the weights of its elements. We present an algorithm for computing this function, that runs in strongly polynomial time for matroids in which independence can be tested in strongly polynomial time. We identify key properties of transversal, scheduling and partition matroids, and exploit them to design robustness algorithms that are more efficient than our general algorithm.